H

Internal gear pump Product guide

Revision Vol.2

1A Pump

Internal gear pump

Product lineup for a wide range of applications

Hydraulic

Chemistry

lubricant

Fuel

2A Pump

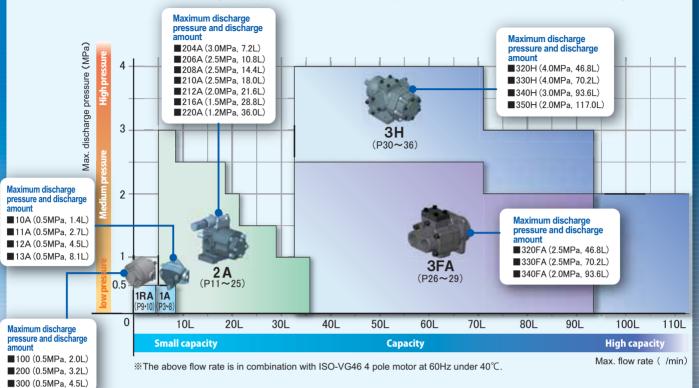
3H Pump

2MY Motor Pump

Main features

- Competitive-priced products offering excellent cost performances
- oDurable performance

Durability would not be deteriorated even in case of pumping liquid difficult to feed such as low viscous liquid.


- Wide variety of products for various applications
- There are products for special uses including long life products compatible with water reactive liquids like urethane materials.
- oSame mounting dimensions as that similar products from other manufacturers are installed in Therefore, switching from other product to a FTP pump can be done without trouble.
- <Note> Mounting dimensions are different in some models.
- oMotors in compliance with the latest standards are available.

Internal gear pump (Standard ver.) performance distribution map

This is the performance distribution map of FTP pumps.

Please choose the pump you need in terms of the max. discharge pressure and the max. flow rate.

<Note>For the selection of the right pump, you should also refer to "Viscosity table of oils" and "Guide for selection of pump" on page 38.

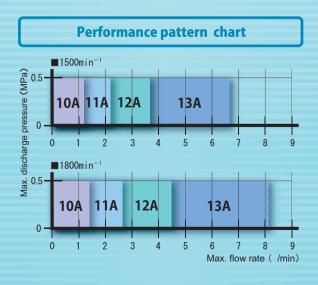
Product configurations and reference pages

Each configuration is classified as a pump alone, a pump integrated with a motor or a base coupling mount type. Please see the following matrix to find the page numbers of the configuration of your choice.

Product conf	Pump model figuration	1A P3∼8	1RA P9·10	2 A P11∼25	3FA P26~29	3H P30∼36
Pu	mp alone	P4•5 (WO) P5	P10	P10 P12~14 (WO) P15 (PL) P16		P31·32 (WO) P33 (PL) P33
	Single phase motor	P6	-	P17-18 (WO) Available (PL) Available		_
Integrated with		P7	-	P19~21 (WO) P21 (PL) Available	P29	_
motor type	Compliance to standards	P8	_	P22	P28	_
Base coupling mount type		Available at request	_	P23~25	Available at request	P34~36

※ (WO)bunker oil,coolant water (PL)liquid seal

■Tips


Material of internal gear pump · · · · · · · · · · · · · · · · · · ·	• P8
Risks to pump operation	P14
Kind of pump ·····	P16
Appropriate filter · · · · · · · · · · · · · · · · · · ·	P32

Relief valve ·····	P37-38
Viscosity table of oils · · · ·	P38
Guide for pump selection	P38

Small capacity / Low pressure

1A	Pump
1 AWO	Pump (Bunker oil, Coolant)
1ME-S	Motor Pump (Single-phase motor)
1ME	Motor Pump (Three-phase motor)
1ME	Motor Pump (CCC·CE Standards)

Pump

Small capacity / Low pressure

This 1A pump is a light, compact and inexpensive pump. The pump is ideal to transfer hydraulic oil and lubricant oil. The max. flow rate and discharge pressure are 8.1L/min and 0.5MPa, respectively. The max. temp. is as follows.

- The VF version (High Temp.) 120°C
- The WO version (Bunker oil, Coolant Water) 150°C
- The IME version or The IME-S version (Dedicated Motor) 120°C

If the motor is dedicatly running 24 hours please use at 80°C or less.

The set pressure of the VB (With relief valve) is usually 0.3MPa.

The rotation direction is counter-clockwise as seen from the end of the shaft.

Model

Model No. Applications

No mark : Standard 10 11 12 13 WO : Bunker oil.

Coolant water

Shaft and shape

No mark : standard (Plain shaft) M: Special moto (shaftend with D cut)

Rotation direaction

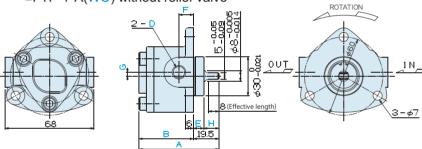
%From pump side No mark: standard rotaiton operation (Counterclockwise direction) R : Reverse rotaion operation (Clockwise)

Seal material

No mark : standard (-5~80°C) V F : Viton(R) for high temp.(120°C)

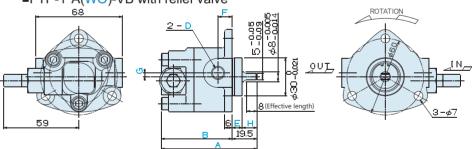
Relief valve

No mark : without valve V B : with valve


*The relief valve is not available for the inverse Model examples:

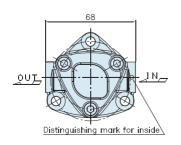
FTP-10AVF (High temp ver.) FTP-12A-VB (With relief valve) FTP-13AM (Dedicated motor ver.)

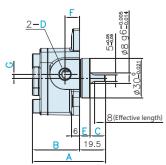
%There is also a product with a L-shaped foot or a square flange. Please contact us for more information.

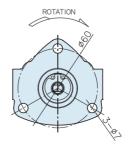

Dimensional diagrams / Standard rotation (mm)

■FTP-1*A(WO) without relief valve

Model	Α	В	D	Е	F	G	Н
10A(WO)	55	35.5	Rc1/8	8	11	3	11.5
11A(WO)	55	35.5	Rc1/8	8	11	3	11.5
12A(WO)	61	41.5	Rc1/4	8	11	3	11.5
13A(WO)	76	56.5	Rc3/8	5	14	5.5	14.5
10A(W0)-VB	69.5	50	Rc1/8	8	11	3	11.5
11A(W0)-VB	69.5	50	Rc1/8	8	11	3	11.5
12A(W0)-VB	75.5	56	Rc1/4	8	11	3	11.5
13A(WO)-VB	90.5	71	Rc3/8	5	14	5.5	14.5


■FTP-1*A(WO)-VB with relief valve



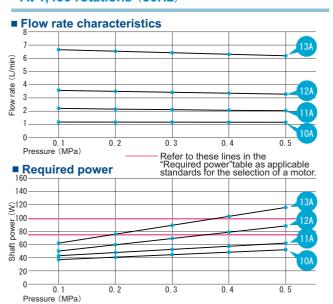

Dimensional diagrams / Reverse rotation(mm)

*Relief valve is not support in case of reverse rotaiton.

■FTP-1*A(WO)R without relief valve

Mode I	A	В	С	D	Е	F	G
11 A (WO)R	55	35.5	11.5	Rc1/8	8	11	3
12A(WO)R	61	41.5	11.5	Rc1/4	8	11	3

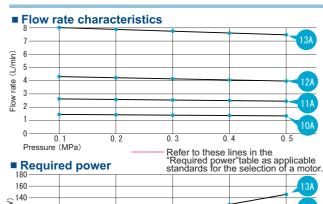
Spec

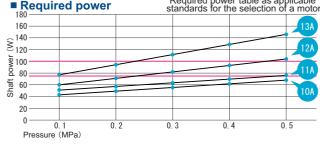

Model	Flow rate per. rev.	Theoretical flow rate (L/min)		Max. discharge pressure	Max. revolution	Approx. weight Without valve/With valve
	(mi/rev)	1500min-1	1800min-1	(MPa)	(min ⁻¹)	(kg)
10A (VB)	0.8	1.2	1.4	0.5	3000	0.50/0.68
11A (VB)	1.5	2.2	2.7	0.5	2000	0.51/0.69
12A (VB)	2.5	3.7	4.5	0.5	1800	0.57/0.75
13A (VB)	4.5	6.7	8.1	0.5	1800	0.76/0.94

OThe above max. discharge pressure and max. revolution are in use of ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Performance

OTest conditions Oil:ISO-VG46 Oil temp:40°C


At 1,450 rotations (50Hz)



Spec		Flow	rate (I	_/min)		Required power (W)				
		Pres	ssure (I	MPa)			Pres	ssure (MPa)	
Model	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5
10A(VB)	1.18	1.17	1.17	1.16	1.16	37	41	45	49	52
11A(VB)	2.21	2.16	2.12	2.07	2.03	43	48	52	57	62
12A(VB)	3.58	3.50	3.43	3.36	3.29	50	59	68	77	88
13A(VB)	6.68	6.55	6.43	6.31	6.19	62	75	89	103	117

OThe required power varies depending on viscosity, temp. etc.

At 1,750 rotations (60Hz)

Spec		Flow	rate (I	L/min)		Required power (W)					
		Pres	sure (I	MPa)		Pressure (MPa)					
Model	0.1	0.2	0.3	0.4	0.5	0.1	0.2	0.3	0.4	0.5	
10A(VB)	1.45	1.42	1.40	1.37	1.34	43	51	56	62	68	
11A(VB)	2.62	2.58	2.54	2.50	2.46	51	57	63	70	76	
12A(VB)	4.31	4.23	4.14	4.06	3.98	60	70	82	93	104	
13A(VB)	8.02	7.88	7.75	7.61	7.48	77	94	110	128	146	

1AWO

Pump (Bunker oil, Coolant)

Small capacity / Low pressure

Special PTFE (Teflon (R)) type seals are used in the 1AWO to prevent deterioration of sealing capability due to chemical reaction with coolant water or bunker oil. Regarding the flow rate, as the viscosity of bunker oil and coolant water is relatively low, flow rates of the WO version are approximately 60% of that of the standard pumps with ISO-VG46 at 40°C. Although the maximum temperature of the 1AWO is 150°C, a pump for higher temperatures can be developed. Please consult with Fuji Techno about a WO pump for higher temp.

1ME-S

Moter Pump

Small capacity / Low pressure

ME-S is a compact unit consisting of the 1A pump and a dedicated motor. The motor is single phase 100/200V. There is no ultrahigh temp. version (VH) of this pump for temperatures higher than 120°C. The set pressure of the relief valve is typically 0.3MPa.

Model

FTP-1ME

75 200

Model No. Applications

10 11 12 13 No mark : starndard WO : Bunkar oil, Coolant oil

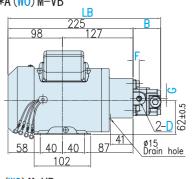
*Look from pump side

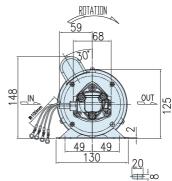
Rotation direction

No mark: standard rotation (Clockwise) R: Reverse rotaion (Counter clockwise)

Seal material

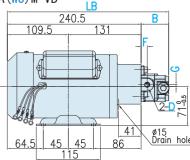
No mark : Standard $(-5\sim80^{\circ}\text{C})$ No mark : No vo VB : With valve VF : Viton(R) (high temp) (120°C, 24hous continous in case of 80°C)

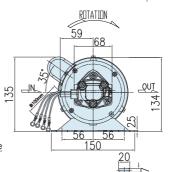

Relief valve


No mark : No valve VB : With valve

Model examples: FTP-1ME75S-10AMVF (75W,single-phase,high temp. spec) FTP-1ME200S-13AM-VB (200W,single-phase,with relief valve)

Dimensional diagrams (mm)


■FTP-1ME75S-1*A (WO) M-VB



	Model	LB	В	D	F	G
I	10A(WO)M-VB	275	50	D - 1 /0		
l	11A(WO)M-VB	275	50	Rc1/8	11	3
l	12A(WO)M-VB	281	56	Rc1/4		

■FTP-1ME200S-1*A (WO) M-VB

Model	LB	В	D	F	G	
10A(W0)M-VB	290.5	50	Da1 /0			
11A(WO)M-VB	290.5	50	Rc1/8	11	3	
12A(WO)M-VB	296.5	56	Rc1/4			
13A(WO)M-VB	311.5	71	Rc3/8	14	5.5	

Spec

	No. of	motor revolutions 50	Hz 1500min ⁻¹	No. of motor revolutions 60Hz 1800min ⁻¹			
Model	Theoretical	low rate motor output (MPa) flow rate		Theoretical	Max. discharge pressure to motor output (MPa)		
	(L/min)				75W	200W	
10AM (VB)	1.2	0.5	0.5	1.4	0.4	0.5	
11AM (VB)	2.2	0.5	0.5	2.7	0.3	0.5	
12AM (VB)	3.7	0.2	0.5	4.5	0.1	0.5	
13AM (VB)	6.7	_	0.5	8.1	_	0.5	

 $O The above max. discharge pressure are in combination with ISO-VG46 at 40 ^{\circ}C. \label{eq:condition} The rates vary depending on viscosity and temperature.$

Motor Spec

Power(W)	Ploe(P)	Rating	Voltage(V)	Frequency(Hz)	Revolutions (min-1)	Current(A)	Approx weight(kg)
75	4	01	100	50/60	1400/1700	1.7/1.4	5
/5	4	81	200	50/60	1400/1700	1/0.8	5
000	4	01	100	50/60	1400/1700	4/3.2	7
200	4	51	200	50/60	1400/1700	2.1/1.8	7

OSingle-phase induction motor

OInsulation class B OIP44

06

1 ME

Moter Pump

(Three-phase Motor)

Small capacity / Low pressure

1ME-S is a compact unit consisting of the 1A pump and a special dedicated motor. The standard motor is 3 phase and 200V class. In case of the high temperature specification, please confer with Fuji Techno.

Usually, 0.3 MPa is the set pressure of the relief valve (VB).

FTP-1ME

75 100 200

Attachment Model No. Applications

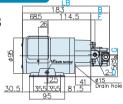
1 or No mark : Horizontal

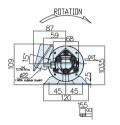
Пм No mark : standard WO : Bunkar oil, coolant oil

Rotation direction

**look from pump side No mark : standard (Clockwise) R : Reverse rotation specification (Counter clockwise)

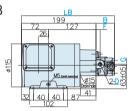
Seal materail Relief valve

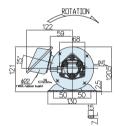

No mark : standard $(-5\sim80^{\circ}\text{C})$ VE \times VF : Viton (R) for high temp (120°C, In case of 24 hour continous 80°C)


No Mark : no valve VB : with valve

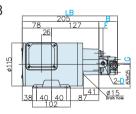
FTP-1ME75-1-10AMVF (75W, horizontal type, high temp. spec) FTP-1ME100-13AM-VB (100W, with relief valve)

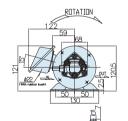
Dimensional diagrams(mm)


■FTP-1ME75-1-1*A(WO)M-VB



Model	LB	В	D	F	G
10A (WO) M -VB	233	50	Do 1 /0		
11A (WO) M -VB	233	50	Rc1/8	11	3
12A (WO) M -VB	239	56	Rc1/4		


■FTP-1ME100-1*A(W0)M-VB



Model	LB	В	D	F	G
10A (WO) M -VB	249	50	D-1 /0		
11A (WO) M -VB	249	50	Rc1/8	11	3
12A (WO) M -VB	255	56	Rc1/4		
13A (WO) M -VB	270	71	Rc3/8	14	5.5

■FTP-1ME200-1*A(W0)M-VB

Model	LB	В	D	F	G
10A (WO) M -VB	255	50	Da1 /0		
11A (WO) M -VB	255	50	Rc1/8	11	3
12A (WO) M -VB	261	56	Rc1/4		
13A (WO) M -VB	276	71	Rc3/8	14	5.5

Spec

	No. of	f motor revolut	ions 50Hz 150	0min ⁻¹	No. of motor revolutions 60Hz 1800min ⁻¹				
Model Theoret		Max.	discharge presotor output (M	ssure to Pa)	Theoretical	Max. discharge pressure to motor output (MPa)			
	flow rate (L/min)	le llow rate		75W	100W	200W			
10AM(VB)	1.2	0.5	0.5	0.5	1.4	0.4	0.5	0.5	
11AM(VB)	2.2	0.5	0.5	0.5	2.7	0.3	0.5	0.5	
12AM(VB)	3.7	0.2	0.5	0.5	4.5	0.1	0.3	0.5	
13AM(VB)	6.7	_	0.2	0.5	8.1	1	0.1	0.5	

O The above max. discharge pressure are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Motor Spec

Power(W)	Ploe(P)	Rating	Voltage(V)	Frequency(Hz)	Revolutions (min-1)	Current(A)	Approx weight(kg)
75	4	S1	200/200/220	50/60/60	1405/1665/1695	0.79/0.7/0.72	5. 0
100	4	S1	200/200/220	50/60/60	1440/1705/1720	1.16/1.06/1.08	5. 0
200	4	S1	200/200/220	50/60/60	1425/1685/1710	1.23/1.15/1.14	6. 2

1 ME

Moter Pump

(Standards (CCC, CE))

Small capacity / Low pressure

1A dedicated motors complying with numerous regulations and specs. The set pressure of the relief valve is usually 0.3MPa.

Model

Motor output Standard FTP—1ME

: 200V (CCC) : 380V (CCC) A : 200V 75 100 200 (ENstandard)

CB: 400V (ENstandard)

Model No. Applications M

No mark : standard WO : Bunkar oil, coolant oil

Rotation direction

%Look form pump side No mark: standard (Clockwise) R : reverse roloution (Counter clockwise)

Seal Material

No Mark : Standard $(-5\sim80^{\circ}\text{C})$ VF : Viton (R) for high temp. (120°C)

Relief valve

No Mark : No valve VB : with valve

Model examples : FTP-1ME75-A-10AMVF (75W, 200V CCC, high temp. spec) FTP-1ME100-B-10AM-VB (100W, 400V CCC, with relief valve)

Dimension, pump spec., motor spec.

- X All numbers are the same as for the standard version. (page 7)
- * The protective structure compliance to CCC, EN (CE) is IP54 and the insulation class is B.

Standard

In order to use motors with 1.1kW or less in China, the motors have to be CCC certified.

Only motors, which meet EN standard and have CE marks attached, can be used in member nations of EU.

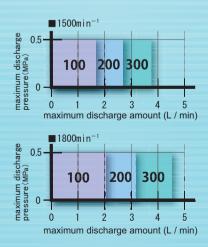
Compliance to standards

		US•Canada	Korea	Australia	ΕU	China	Japan
	Main Requirments	1HP~200HP (0.75kW~150kW)	0.75kW∼37kW I E 2	0.73kW~185kW LEVEL 1A.1B	0.75kW~7.5kW I E 2	0. 75kW~375kW GB3 ~1. 1kW CCC	0.75kW∼375kW I E 3
ŀ		IE3	1 L Z	LEVEL IA,IB	1 L Z	~1. IKW CCC	1 🗆 5
	Suitable situation	standard use %for 1HP(0.75kW)below	Standard use	Standard use ※for 0.73kW below	CE Product use %for 0.75kW below	CCC product use %for 0.75kW below	standard use ※for 0.75kW below

O The above is as of May, 2015. Since standards may be revised, please check the latest status of a standard requirement.

Material of FTP (Internal Gear Pump)


The FTP pump metal components are made of cast iron (FC) or carbon steel (SC) and the seal parts of rubber or resin. Therefore the main liquids that can be fed using the FTP pumps are various kinds of oil. FTP cannot handle corrosive liquids like acid and alkaline. However, since iron type metals are able to bear some chemicals like isocyanate and polyol, both of which are materials of urethane, expensive pumps used in urethane production have been replaced with FTP. If it is requested by customers, Fuji Techno will study the development of stainless or ceramic type pump.


Small Capacity / low pressure

The motor can be rotated clockwise or counter clockwise.

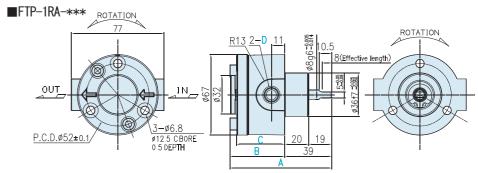
The liquid always flows in one direction.

Performance Pattern Chart

1RA Pump

Small Capacity / low pressure

The 1RA is anb expensive, light and compact Pump.


This pump is ideal for the transport of hydraulic oil, lubricating oil in use following 4.5L / min 0.5MPa. The pump can rotate clockwise and counter clockwise along with the pump shaft. The pump also has a suction port and a discharge port. Prevention from rotor abnormal postion, using a special kind of O-ring and rotationg 180 degrees in rotation direction.

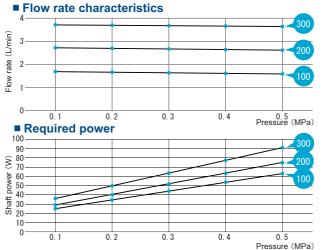
Model

Dimensional diagrams(mm)

Model	Α	В	С	D
100	84.5	45.5	40	Rc1/4
200	88.5	49.5	44	Rc1/4
300	92.5	53.5	48	Rc1/4

Spec

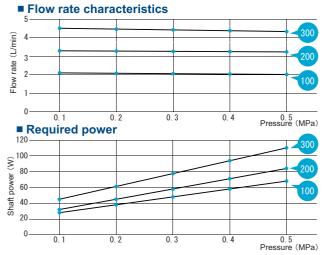
	Madal	Flow rate per. rev.	Theoretical flo	w rate (L/min)	Max. discharge	Max. revolution	Approx. weight
	Model	(ml/rev)	1500min-1	1800min-1	pressure (MPa)	(min ⁻¹)	(kg)
-	100	1.16	1.74	2.08	0.5	2000	1.1
1	200	1.80	2.70	3.24	0.5	2000	1.2
1	300	2.50	3.75	4.5	0.5	2000	1.3

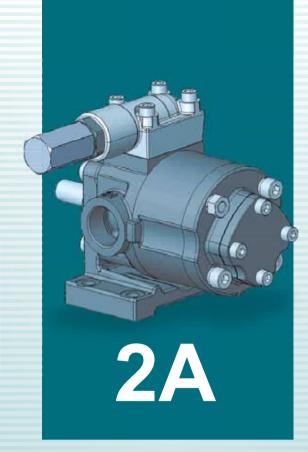

OThe above max. discharge pressure and max. revolution are in use of ISO-VG46 at 40°C.

The rates vary depending on viscosity and temperature.

Performance

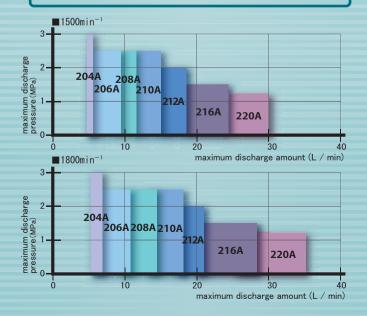
OTest condition Oil:ISO-VG46 oil temp:40°C


At 1,450 rotations (50Hz)


Spec		Flow rate (L/min)					Required power (W)				
		Pres	ssure (MPa)		Pressure (MPa)					
Model	0.1	0. 2	0. 3	0.4	0.5	0. 1	0. 2	0.3	0.4	0.5	
100	1. 69	1.67	1.64	1. 62	1. 59	25	34	44	54	63	
200	2. 72	2. 70	2. 67	2. 65	2. 62	29	40	51	63	75	
300	3. 71	3.69	3. 68	3. 66	3. 64	36	49	63	77	91	

ORequired power change as per viscosity and temperatue

At 1,750 rotations (60Hz)


Spec		Flow rate (L/min)					Required power (W)			
		Pres	ssure (MPa)		Pressure (MPa)				
Model	0. 1	0. 2	0.3	0.4	0.5	0. 1	0. 2	0.3	0.4	0.5
100	2. 10	2. 08	2.06	2. 03	2. 01	28	37	47	58	68
200	3. 29	3. 28	3. 26	3. 25	3. 23	32	45	58	71	84
300	4. 51	4. 47	4. 42	4. 38	4. 33	45	61	77	94	110

Medium Capacity / Medium pressure

2A	Pump
2AWO	Pump (Bunker oil , Coolant)
2APL	Pump (Liquid seal to cut off outside air)
2ME-S	Motor pump (Single-phase motor)
2MY•2Y	Motor pump (Three-phase motor)
2MY-2AWOM	Motor pump (Bunker oil , Coolant)
2MY	Motor pump integrated (CCC · GB3 · CE · IE3 corresponding special motor)
2MBC	Base coupling mounting type

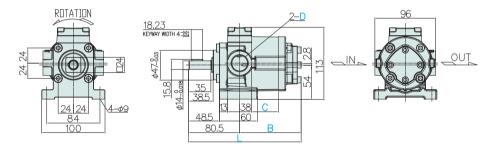
Performance Pattern Chart

2 A Pump

Medium Capacity / Medium pressure

The 2A pump is for mid. capacity and mid. pressure. The max. flow rate and discharge pressure are 36L/min or less and 3MPa or less. For the applications of hydraulic pressure, lubrication and cooling, this pump is widely used to feed hydraulic oil and lubrication oil. A high temp. ver. (VF) and an ultra-high temp. ver. (VH) are up to 120°C and 200°C, respectively. The standard rotation direction of this pump is counter-clockwise.

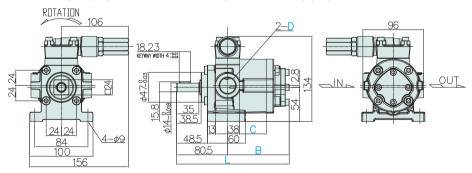
Model

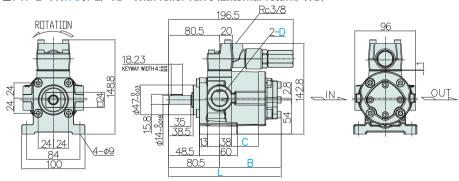

FTP— A	Applications	Form	Rotation direction	Seal material —	Relief valve	Relief valve set pressure
206 208	No mark: standard WO: Bunker oil, Coolant Water PL: Liquid seal	No mark : standard M : Dedicated motor (short shaft)		No mark: Standard(-5~80°C) VF: Viton(R) for high temp. (120°C) VH: Ultrahigh temp. (200°C) In case of the continuous operation of the pump for a long period, please contact Fuji Techno for consultation in advance.	No mark : No valve VB : With valve (Internal-return) VD : With valve (External-return)	ex. 0.1: Set pressure 0.1MPa (Spring No.1L) 0.5: Set pressure 0.5MPa (Spring No.2L) 1.0: Set pressure 1.0MPa (Spring No.3L) 2.0: Set pressure 2.0MPa (Spring No.4L)
220						

Model examples: FTP-203A-VB (With valve (Internal-return)) FTP-204AR (Counter-clockwise as seen from the shaft end)

**There is also a product of the L-shaped with a foot or without any corner flange as a mounting shape. Please contact us for more information.

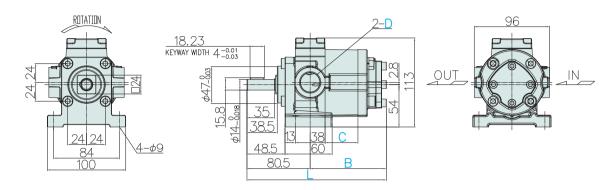
Dimensional diagrams / Standard rotation (mm)

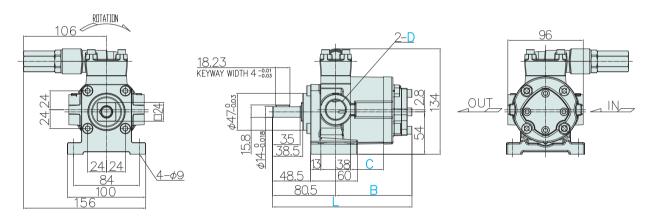

■FTP-2**A (WO、PL) Without valve


■ Standard and WO/PL type ※Common Drawing

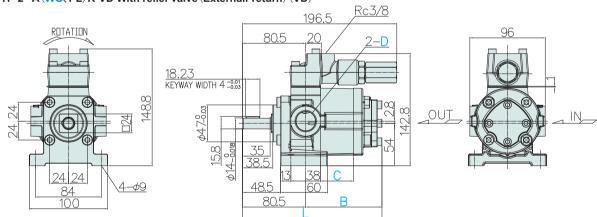
Mode I	ш	В	С	D
204A (WO/PL)	145. 7	65. 2	10	-
206A (WO/PL)	150. 7	70. 2	15	Rc 1/2
208A (WO/PL)	157. 0	76. 5	21.3	1/2
210A (WO/PL)	162. 2	81.7	26. 5	
212A (WO/PL)	167. 4	86. 9	31.7	Rc
216A (WO/PL)	177. 6	97. 1	41.9	3/4
220A (WO/PL)	187. 7	107. 2	52. 0	

■FTP-2**A (WO、PL)-VD With relief valve (External-return) (VD)


■FTP-2**A (WO、PL)-VD With relief valve (External-return) (VD)


Please read the following page as well.

Dimensional diagrams / Reverse rotation (mm)


■FTP-2**A (WO、PL) R Without relief valve

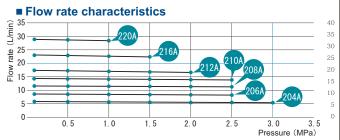
■ FTP-2**A (WO、PL) R-VB With relief valve (Internal-return) (VB)

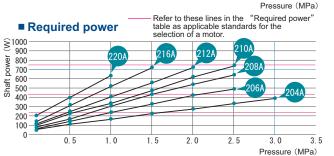
■ FTP-2**A (WO、PL) R-VD With relief valve (Externall-return) (VD)

■ Standard and WO/PL type ※Common Drawing

			71.			5			
Model	L	В	C	D	Model	L	В	С	D
204A (WO,PL) R 145. 7	65. 2	10		210A (WO,PL) R	162. 2	81. 7	26. 5	
206A (WO,PL) D 150 7	70.2	15		212A (WO,PL) R	167. 4	86. 9	31. 7	Rc
	-	-			216A (WO,PL) R	177. 6	97. 1	41.9	3/4
208A (WO,PL) R 157. C	76. 5	21. 3		220A (WO,PL) R	187.7	107. 2	52. 0	

Spec

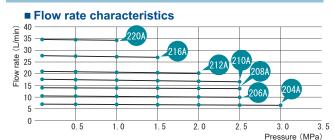

Model	Flow rate per. rev.	Theoretical flo	w rate (L/min)	Max. discharge	Max. revolution	Approx. weight Without valve/With valve
iviodei	(ml/rev)	1500min-1	1800min-1	pressure (MPa)	(min ⁻¹)	(kg)
204A (VB,VD)	4	6.0	7.2	3.0	3000	3.6/4.0
206A (VB,VD)	6	9.0	10.8	2.5	2500	3.8/4.2
208A (VB,VD)	8	12.0	14.4	2.5	2500	4.0/4.4
210A(VB,VD)	10	15.0	18.0	2.5	2500	4.1/4.6
212A(VB,VD)	12	18.0	21.6	2.0	2000	4.3/4.7
216A(VB,VD)	16	24.0	28.8	1.5	1800	4.6/5.1
220A (VB,VD)	20	30.0	36.0	1.2	1800	5.0/5.5

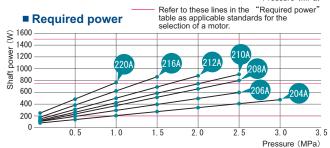

[•] The above max. discharge pressure and max. revolution are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Performance

● Test conditions Oil:ISO-VG46 Oil temp.:40°C

At 1,450 rotations (50Hz)





Spec		Flow rate (L/min)							Required power (W)					
		Р	ress	ure (MPa	1)			F	ress	ure	(MPa	a)	
Model	0.1	0.5	1.0	1.5	2.0	2.5	3.0	0.1	0.5	1.0	1.5	2. 0	2. 5	3.0
204A	5.8	5.7	5.6	5.6	5.5	5.4	5.3	66	110	169	227	283	340	394
206A	8.7	8.6	8.5	8.4	8.3	8.2	_	86	158	240	329	415	497	_
208A	11.6	11.5	11.5	11.4	11.4	11.3	_	91	186	305	423	543	662	_
210A	14.4	14.4	14.3	14.0	13.9	13.8	_	104	210	345	480	615	749	_
212A	17.4	17.2	17.0	16.8	16.6	_	_	123	250	405	565	730	_	_
216A	23.1	22.9	22.8	22.4	_	_	_	148	308	510	715	_	_	_
220A	28.9	28 7	28 4	_	_	_	_	205	396	633	_	_	_	_

OThe required power varies depending on viscosity, temp. etc.

At 1,750 rotations (60Hz)

Spec		Flow rate (L/min)							Required power (W)					
		Р	ress	ure (MPa	1)			F	ress	ure	(MPa	a)	
Model	0.1	0.5	1.0	1.5	2.0	2.5	3.0	0.1	0.5	1.0	1.5	2.0	2.5	3.0
204A	7.0	6.9	6.8	6.7	6.7	6.6	6.5	80	133	204	274	342	410	476
206A	10.4	10.3	10.2	10.1	10.0	9.9	_	104	188	290	397	500	599	_
208A	14.0	13.9	13.8	13.8	13.8	13.7	_	110	225	368	510	655	800	- 1
210A	17.6	17.5	17.2	17.0	16.9	16.7	_	125	250	413	575	740	904	-
212A	21.0	20.9	20.6	20.4	20.2	_	_	148	302	488	681	881	_	-
216A	27.8	27.7	27.4	27.0	_	_	_	179	372	616	863	_	_	-
220A	34.8	34.6	34.3	_	_	_	_	248	478	764	_	_	_	-

Tip 2

Risk to pump operation

Foreign particles are a hazard to all kinds of pump. Foreign particles can cause problems, not only to displacement pumps such as FTP which function by differential pressures through its rotation, but also dynamic pumps discharging liquid by giving a direction to liquid. Although the WO type FTP pumps can withstand foreign particles better than others, it is always essential to use a filter to prevent particles from entering into a pump.

2AWO

Pump

(Bunker oil, Coolant)

Medium Capacity / Medium pressure

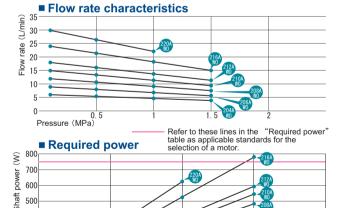
Special PTFE (Teflon (R)) seals are used to isolate bearings from liquid so that partial wear of the bearings is minimized. Thus, the 2AWO is able to reach a long product life even with spray of waste oil or coolant liquid with slurry.

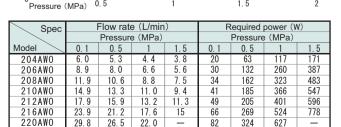
The 2AWO can take up to the temperature of 150°C. In case that it is required to handle a temperature higher than 150°C is required, please consult with Fuji Techno.

A suction pressure can be as high as the max. discharge pressure in the 2AWO.

In the meantime, please note that 120°C is the max, temperature of the motor pump 2MY or 2Y. If the motor is dedicatly running 24 hours, please use at 80°C or less.

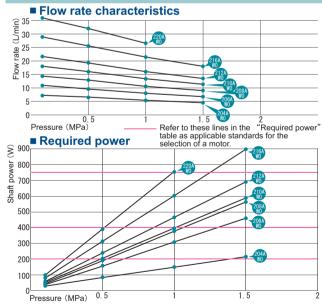
Spec


Model	Theoretical	Theoretical flo	w rate (L/min)	Max. discharge	Max. revolution	Approx. weight Without valve/With valve	
iviodei	discharge (ml/rev)	1500min-1	1800min-1	pressure (MPa)	(min ⁻¹)	(kg)	
204AW0 (VB,VD)	4	6.0	7.2	1.5	1800	3.6/4.0	
206AW0 (VB,VD)	6	9.0	10.8	1.5	1800	3.8/4.2	
208AW0 (VB,VD)	8	12.0	14.4	1.5	1800	4.0/4.4	
210AW0 (VB,VD)	10	15.0	18.0	1.5	1800	4.1/4.6	
212AW0 (VB,VD)	12	18.0	21.6	1.5	1800	4.3/4.7	
216AW0 (VB,VD)	16	24.0	28.8	1.5	1800	4.6/5.1	
220AW0 (VB,VD)	20	30.0	36.0	1.2	1800	5.0/5.5	


- The above max. discharge pressure and the max. revolution are in combination with ISO-VG2 at 40°C. When ISO-VG46 is used at 40°C, the max. discharge pressure and the max. revolution are the some as that of the standard version. (See page 14)
- In the event that abrasive liquid like kerosene oil is used, a discharge pressure must be 0.7MPa or less.

Performance

● Test conditions Oil:ISO-VG2 Oil temp.:40°C


At 1.450 rotations (50Hz)

The required power varies depending on viscosity temp. etc.

At 1,750 rotations (60Hz)

Spec		low rate	e (L/min)	Required power (W)				
		Pressure	e (MPa)		Pressure (MPa)				
Model	0.1	0.5	1	1.5	0. 1	0.5	1	1. 5	
204AW0	7. 2	6. 4	5. 3	4. 5	30	84	150	217	
206AW0	10.8	9.6	8. 0	6.8	37	158	309	460	
208AW0	14. 4	12. 8	10.6	9	42	192	378	565	
210AW0	18.0	16.0	13. 3	11.3	51	205	397	590	
212AW0	21.6	19. 2	16.0	13. 5	58	240	466	693	
216AW0	28.8	25. 6	21. 3	18	80	314	605	897	
220AW0	36.0	32. 0	26. 6	_	99	390	754	_	

400

300

200

100

2APL

Pump

(Liquid seal to cut off outside air)

Medium Capacity / Medium pressure

By using special PTFE (Teflon (R)) seals to contain liquid between the seals, the liquid is prevented from contacting open air. The 2APL is ideal to transfer air reactive chemicals such as isocyanate.

The max. temperature the 2APL can handle is 120°C.

The max. temperature of the motor pump version is 120°C as well. If a temperature higher than 120°C is required, please contact Fuji Techno for consultation.

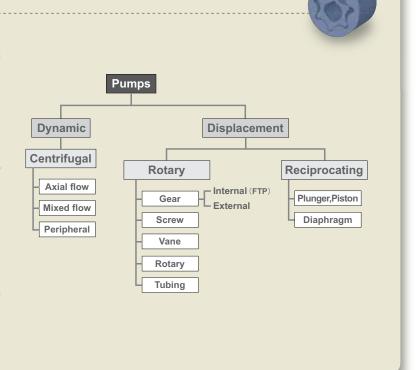
Because of the use of the seals, a suction pressure can be up to the max. discharge pressure in the 2APL.

If the motor is dedicatly running 24 hours, please use at 80°C or less.

Spec

Madal	Theoretical	Theoretical flo	ow rate (L/min)	Max. discharge	Max. revolution	Approx. weight Without valve/With valve	
Model	discharge (ml/rev)	1500min-1	1800min-1	pressure (MPa)	(min ⁻¹)	(kg)	
204APL(VB,VD)	4	6.0	7.2	1.5	1800	3.6/4.0	
206APL(VB,VD)	6	9.0	10.8	1.2	1800	3.8/4.2	
208APL(VB,VD)	8	12.0	14.4	1.2	1800	4.0/4.4	
210APL(VB,VD)	10	15.0	18.0	1.2	1800	4.1/4.6	
212APL(VB,VD)	12	18.0	21.6	1.0	1800	4.3/4.7	
216APL(VB,VD)	16	24.0	28.8	0.7	1800	4.6/5.1	
220APL(VB,VD)	20	30.0	36.0	0.6	1800	5.0/5.5	

- The above max. discharge pressure and max. revolution are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.
 In the event that abrasive liquid like kerosene oil is used, a discharge pressure must be 0.7MPa or less.


CCCCCCCCCCCCCC Tip 3

Kinds of pump

There are many different types of pumps. A heart is also a pump, familiar to everyone. A piston pump to draw water from a well has been a common type of pump for many years. Pumps are used to transfer not only liquid but also gas and

Pumps are categorized into dynamic and displacement types. In FTP pumps, the gap between the inner rotor and the outer rotor changes as it rotates. When the gap gets larger, a pressure differential occurs between an atmospheric pressure on liquid and a pressure in the gap. Consequently, the gap fills with liquid. As the FTP pump continues to rotate, liquid is discharged.

A displacement pump transfers liquid by changing a space inside like on a FTP type. A rotary type displacement pump changes the internal space by rotation. An internal gear pump is a pump where the gears are mounted on the inner rotor and make contact with the outer rotor.

2ME-S

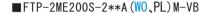
Motor Pump

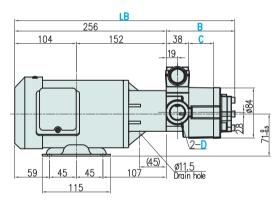
(Single-phase motor integrated model)

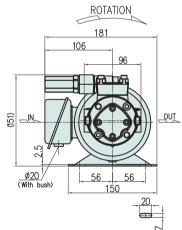
Medium Capacity / Medium pressure

The 2MY-S consists of the 2A pump and a dedicated motor and has a small footprint. The ultra high temperature version (VH, max. temp. 150°C) is available.

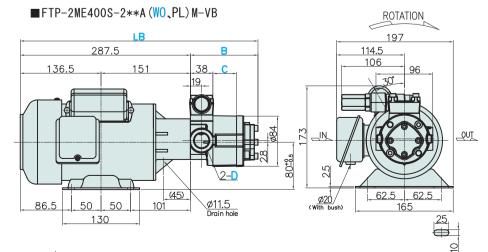
Model

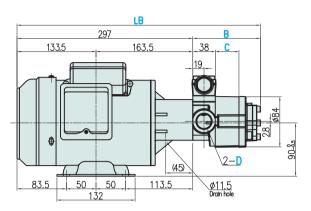

Motor output Model No. Applications Rotation direction Relief valve Relief valve set pressure Seal material FTP-2ME Is 200 400 204 No mark: Standard No mark: Clockwise No mark: No mark : No valve 206 0.1 ; Set pressure 0.1MPa (Spring No.1L) VB : With valve WO: Bunker oil, R: Counter clockwise Standard (-5~80°C) VF : Viton (R) for high temp. 0.5 : Set pressure 0.5MPa (Spring No.2L) 750 Coolant Water (Internal-return) 208 210 VD : With valve 1.0 : Set pressure 1.0MPa (Spring No.3L) PL: Liquid seal (120°C, 24hous continous 212 in case of 80°C) (External-return) 2.0 : Set pressure 2.0MPa (Spring No.4L) 216 VH : Ultrahigh temp.

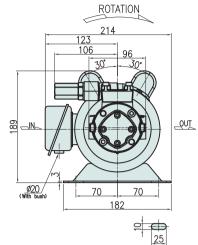

Model examples: FTP-2ME200S-204AM-VB1.0 (200W, single-phase, with relief valve 〈set pressure 1.0MPa〉)
FTP-2ME400S-210AMR (400W, single-phase, counter-clockwise as seen from the pump side)
FTP-2ME750S-216AM-VD (750W, single-phase, with relief valve 〈external-return〉)


(150°C, Incase of countinous runing use base coupling) ** High temp specification (VH, 150°C) Please contact to company

Dimensional diagrams (mm)


220


Model	LB	В	С	D
204A(WO,PL)M	340.2	84.2	10	
206A(WO,PL)M	345.2	89.2	15	Rc1/2
208A(WO,PL)M	351.5	95.5	21.3	
210A(WO,PL)M	356.7	100.7	26.5	
212A(WO,PL)M	361.9	105.9	31.7	Rc3/4
216A(WO,PL)M	372.1	116.1	41.9	



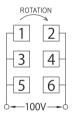
Model	LB	В	С	D
204A(WO,PL)M	371.7	84.2	10	
206A(WO,PL)M	376.7	89.2	15	Rc1/2
208A(WO,PL)M	383.0	95.5	21.3	
210A(WO,PL)M	388.2	100.7	26.5	
212A(WO,PL)M	393.4	105.9	31.7	D=2 /4
216A(WO,PL)M	403.6	116.1	41.9	Rc3/4
220A(WO,PL)M	413.7	126.2	52.0	

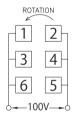
Dimensional diagrams (mm)

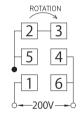
■FTP-2ME750S-2**A(WO,PL)M-VB

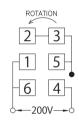
Model	LB	В	С	D
204A(WO,PL)M	381.2	84.2	10	
206A(WO,PL)M	386.2	89.2	15	Rc1/2
208A(WO,PL)M	392.5	95.5	21.3	
210A(WO,PL)M	397.7	100.7	26.5	
212A(WO,PL)M	402.9	105.9	31.7	Rc3/4
216A(WO,PL)M	413.1	116.1	41.9	1100/4
220A(WO,PL)M	423.2	126.2	52.0	

Wiring diagram


■100V (LOW VOLTAGE)


Clockwise as seen from pump side


Counter-clockwise as seen from pump side


■200V (HIGH VOLTAGE)

Clockwise as seen from pump side Counter-clockwise as seen from pump side

Spec

	No.	of motor revolution	ons 50Hz 1500mi	n ⁻¹	No. of motor revolutions 60Hz 1800min ⁻¹				
Model	Theoretical	Max.discharge	pressure to moto	r output (MPa)	Theoretical	Max.discharge	oressure to motor	output (MPa)	
	flow rate (L/min)	200W	400W	750W	flow rate (L/min)	200W	400W	750W	
204AM (VB,VD)	6.0	1. 2	3.0	3.0	7. 2	0. 9	2. 3	3.0	
206AM (VB,VD)	9.0	0. 7	1.8	2. 5	10.8	0. 5	1.4	2. 5	
208AM (VB,VD)	12.0	0. 5	1. 3	2. 5	14. 4	0. 3	1. 0	2. 3	
210AM (VB,VD)	15.0	0. 4	1. 1	2. 5	18. 0	0. 3	0. 9	2. 0	
212AM (VB,VD)	18.0	0. 3	0. 9	2. 0	21.6	_	0. 7	1.6	
216AM (VB,VD)	24.0	0. 2	0. 7	1.5	28. 8	_	0. 5	1. 2	
220AM (VB,VD)	30.0	_	0. 4	1. 2	36. 0	_	0. 3	0. 9	

The above max. discharge pressures are in combination with ISO-VG46 at 40oC. The max. pressures may be lower depending on viscosity and temperature. Note that for liquids with a higher viscosity than IEO-VG46 at 40 oC, the motor power may be insufficient. Lower viscosity liquids limit the pumps maximum discharge pressure. For handling higher viscosity (>46 mm2/s), The motor capacity has to be increased by 1 or 2 levels. For use of lower viscosity (<10 mm2/s), please refer to the spec. of 2AWO (page 15).

Motor spec

Power (W)	Pole (P)	Rating	Voltage (V)	Frequency (Hz)	Revolutions (min-1)	Current (A)	Approx. Weight (kg)	
		0.1	100	50 60	1400 1700	4.0 3.2	8	
200 4	S1	200	50 60	1400 1700	2.1 1.8	8		
400		100	50 60	1420 1700	9.5 8.5	11		
400	4	S 1	200	50 60	1420 1700	4.8 4.3	11	
750		0.1	100	50 60	1420 1720	11.8 10.3	1.4	
750	4	\$1	200	50 60	1420 1720	6.0 5.2	14	

Single-phase induction motor

Insulation class B

2MY • 2Y

Motor Pump (3 phase motor integrated model)

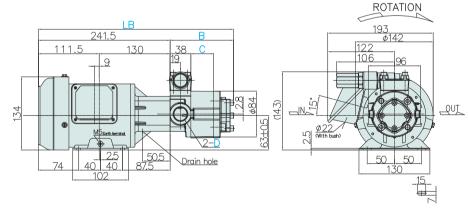
Medium Capacity / Medium pressure

The compact 2MY is the combination of the 2A pump and a dedicated motor. The standard spec. of the motor is 3 phase and 200V.

There is the ultra high temperature version (VH, max. temp. 150°C) in addition to the VF version.

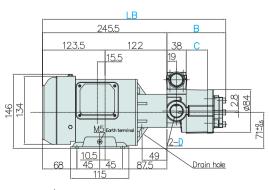
Model

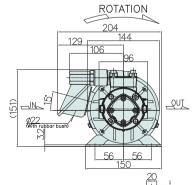
FTP-	Motor No.	Motor output —	Motor standard —	Model No.	Applications	Rotation direction	Seal material —	Relief valve	Relief valve set pressure
	2MY:	200	No mark: IE1	204	No mark : Standard	※look form pump	No mark:	No mark : No valve	ex.
	\sim 700W	400	EA: 200V class	206	WO: Bunker oil,	side No mark : standard	Standard (-5~80°C)	VB : With valve	0.1 : Set pressure 0.1MPa (Spring No.1L)
	2Y:	700	(IE3)	208	Coolant Water	(Clockwise)	VF: Viton (R) for high temp.	(Internal-return)	0.5 : Set pressure 0.5MPa (Spring No.2L)
	750W∼(IE3)	750	EB: 400V class	210	PL: Liquid seal	R: reverse roloution	(120°C, 24hous continous	VD: With valve	1.0 : Set pressure 1.0MPa (Spring No.3L)
		1500	(IE3)	212		(Counter clockwise)	in case of 80°C)	(External-return)	2.0 : Set pressure 2.0MPa (Spring No.4L)
				216			VH: Ultrahigh temp.		
				220			(150°C, Incase of countinous	s runing use base cou	ipling)
							※ High temp specification (V	/H, 150°C) Please co	ntact to company
			Madal ava	mnloo . E	TD 2MV200 204AM \	/R1.0 (200W 3 phase	a with rolinf valvo. /eat proce	uro 1 0MPa\)	


Model examples: FTP-2MY200-204AM-VB1.0 (200W, 3 phase, with relief valve 〈set pressure 1.0MPa〉)

FTP-2MY400-210AMR (400W, 3 phase, counter-clockwise as seen from the pump side)

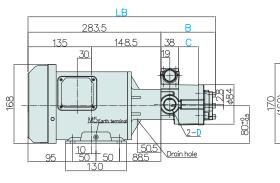
FTP-2Y750-EA-216AM-VD (750W, 200V, IE3, 3 phase, with relief valve 〈external-return〉)

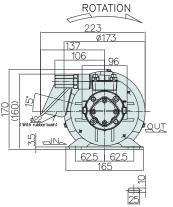

Dimensional diagrams(mm)


■FTP-2MY200-2**A(W0,PL)M-VB

Model	LB	В	C	D
204A(WO,PL)M	325.7	84.2	10	
206A(WO,PL)M	330.7	89.2	15	Rc1/2
208A(WO,PL)M	337.0	95.5	21.3	
210A(WO,PL)M	342.2	100.7	26.5	
212A(WO,PL)M	347.4	105.9	31.7	Rc3/4
216A(WO,PL)M	357.6	116.1	41.9	

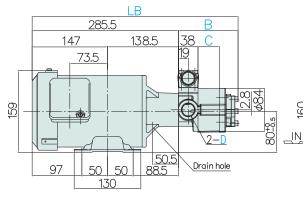
■FTP-2MY400-2**A(W0,PL)M-VB

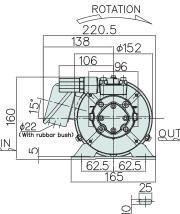




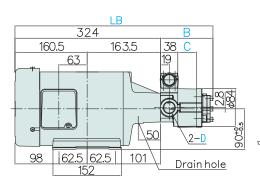
Model	LB	В	C	D
204A(WO,PL)M	329.7	84.2	10	
206A(WO,PL)M	334.7	89.2	15	Rc1/2
208A(WO,PL)M	341.0	95.5	21.3	
210A(WO,PL)M	346.2	100.7	26.5	
212A(WO,PL)M	351.4	105.9	31.7	Rc3/4
216A(WO,PL)M	361.6	116.1	41.9	NG3/4
220A(WO,PL)M	371.7	126.2	52.0	

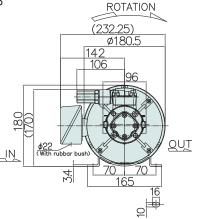
Dimensional diagrams (mm)


■FTP-2MY700-2**A(W0,PL)M-VB



Model	LB	В	C	D
204A(WO,PL)M	367.7	84.2	10	
206A(WO,PL)M	372.7	89.2	15	Rc1/2
208A(WO,PL)M	379.0	95.5	21.3	
210A(WO,PL)M	384.2	100.7	26.5	
212A(WO,PL)M	389.4	105.9	31.7	Rc3/4
216A(WO,PL)M	399.6	116.1	41.9	NG3/4
220A(WO,PL)M	409.7	126.2	52.0	


■FTP-2Y750-(EA,EB)-2**A(WO,PL)M-VB



Model	LB	В	C	D
204A(WO,PL)M	369.7	84.2	10	
206A(WO,PL)M	374.7	89.2	15	Rc1/2
208A(WO,PL)M	381.0	95.5	21.3	
210A(WO,PL)M	386.2	100.7	26.5	
212A(WO,PL)M	391.4	105.9	31.7	Rc3/4
216A(WO,PL)M	401.6	116.1	41.9	KG3/4
220A(WO,PL)M	411.7	126.2	52.0	

Model	LB	В	С	D
204A(WO,PL)M	408.2	84.2	10	
206A(WO,PL)M	413.2	89.2	15	Rc1/2
208A(WO,PL)M	419.5	95.5	21.3	
210A(WO,PL)M	424.7	100.7	26.5	
212A(WO,PL)M	429.9	105.9	31.7	Rc3/4
216A(WO,PL)M	440.1	116.1	41.9	NGO/ 4
220A(WO PL)M	450.2	126.2	52.0	

Spec

	No.	of motor re	evolutions	50Hz 150	0min ⁻¹	No. of motor revolutions 60Hz 1800min ⁻¹						
Model	Theoretical flow rate	Max. discharge pressure to motor output (MPa)					Theoretical	Max. dis	charge pre	essure to n	notor outp	ut (MPa)
	(L/min)	200W	400W	700W	750W	1500W	flow rate (L/min)	200W	400W	700W	750W	1500W
204AM(VB,VD)	6.0	1.2	3.0	3.0	3.0	3.0	7.2	0.9	2.3	3.0	3.0	3.0
206AM(VB,VD)	9.0	0.7	1.8	2.5	2.5	2.5	10.8	0.5	1.4	2.5	2.5	2.5
208AM(VB,VD)	12.0	0.5	1.3	2.5	2.5	2.5	14.4	0.3	1.0	2.1	2.3	2.5
210AM(VB,VD)	15.0	0.4	1.1	2.3	2.5	2.5	18.0	0.3	0.9	1.8	2.0	2.5
212AM(VB,VD)	18.0	0.3	0.9	1.8	2.0	2.0	21.6	_	0.7	1.5	1.6	2.0
216AM(VB,VD)	24.0	0.2	0.7	1.4	1.5	1.5	28.8	_	0.5	1.1	1.2	1.5
220AM(VB,VD)	30.0	_	0.4	1.1	1.2	1.2	36.0	_	0.3	0.8	0.9	1.2

O The above max. discharge pressures are in combination with ISO-VG46 at 40°C. The max. pressures may be lower depending on viscosity and temperature. Note that for liquids with a higher viscosity than IEO-VG46 at 40°C, the motor power may be insufficient. Lower viscosity liquids limit the pumps maximum discharge pressure. For handling higher viscosity (>46 mm2/s), The motor capacity has to be increased by 1 or 2 levels. For use of lower viscosity (<10 mm2/s), please refer to the spec. of 2MY-2AWO M (page 21).

Motor spec

Power (W)	Pole (P)	Rating	Voltage (V)	Frequency (Hz)	Revolutions (min ⁻¹)	Current (A)	Approx. weight(kg)
200	4	S1	200/200/220	50/60/60	1425/1685/1710	1. 23/1. 15/1. 14	10
400	4	S1	200/200/220	50/60/60	1425/1710/1725	2. 4/2. 1/2. 1	9. 7
700	4	S1	200/200/220/220/230	50/60/50/60/60	1429/1715/1441/1732/1739	3.8/3.4/4.4/3.3/3.4	13
750	4	CONT	200/200/220	50/60/60	1440/1720/1740	3. 3/3. 1/3. 0	14
1500	4	CONT	200/200/220	50/60/60	1450/1740/1750	6. 9/6. 2/6. 0	22

O Squirrel-cage induction motor

2MY-2AWOM

Motor Pump

(Bunker oil, Coolant)

Medium Capacity / Medium pressure

The 2MY-2AWOM consists of a dedicated motor and the 2AWO pump suitable for feeding coolant water and bunker oil such as waste oil. This unit has a small footprint. In case the ultra high temperature version (VH, max. 150°C) is required, please consult with Fuji Techno.

Model examples: FTP-2Y750-EA-220AWOM-VB0.7 (750W, 200V, IE3, 3 phase, with relief valve 〈set pressure 0.7MPa〉)

Spec

	N	No. of motor revolutions 50Hz 1500min ⁻¹							No. of motor revolutions 60Hz 1800min ⁻¹				
Model	Theoretical flow rate	Max. discharge pressure to motor output (MPa)					Theoretical flow rate	Max. dis	charge pr	essure to r	motor outp	ut (MPa)	
	(L/min)	200W	400W	700W	750W	1500W	(L/min)	200W	400W	700W	750W	1500W	
204AWOM(VB,VD)	6.0	1. 2	1.5	1.5	1.5	1.5	7.2	1.0	1.5	1.5	1.5	1.5	
206AWOM(VB,VD)	9.0	0.7	1.5	1.5	1.5	1.5	10.8	0.6	1.2	1.5	1.5	1.5	
208AWOM(VB,VD)	12.0	0. 6	1.2	1.5	1.5	1.5	14.4	0.4	1.0	1.5	1.5	1.5	
210AWOM(VB,VD)	15.0	0.4	1.0	1.5	1.5	1.5	18.0	0.3	1.0	1.5	1.5	1.5	
212AWOM(VB,VD)	18.0	0. 3	0.9	1.5	1.5	1.5	21.6	ı	0.8	1.5	1.5	1.5	
216AWOM(VB,VD)	24.0	0. 2	0.7	1.3	1.4	1.5	28.8	_	0.6	1.1	1.2	1.5	
220AWOM(VB,VD)	30.0	_	0.6	1.1	1.2	1.2	36.0	_	0.5	0.9	0.9	1.2	

O The above max. discharge pressure are in use of ISO-VG2 at 40°C.

O Insulation class E (750/1500F)

O Totally-enclosed and fan cooled type

³⁸⁰V/50Hz, 400V/50•60Hz, 440V/60Hz are semi-standard versions. ((IE3) 400V/50•60Hz, 440V/60Hz)

Motor Pump

Standards (CCC, GB3, CE, IE3)

Medium Capacity / Medium pressure

In case of the exportation of the pump with the motor, it is necessary to comply with concerned standard of a country, to which the pump is exported.

Fuji Techno has set up a system to supply motors complying with the latest standards. It is required to meet the IE3 standard in Japan starting 2015.

Model

Motor output 200 No mark : Standard 400 A : 200V class 700 / 750 / CCC, GB 1500 / GB3 B : 380V class	rd 204 N 206 W 208 210 P 212 216	Mo mark : Standard NO : Bunker oil, Coolant Water PL : Liquid seal	Rotation direction No mark: Clockwise R: Counter clockwise	No mark : Standard (-5~80°C) VF:Viton (R) for high temp. (120°C)	VD : With valve (External-return)	ex. 0.1: Set Pressure 0.1MPa (Spring No.1L) 0.5: Set Pressure 0.5MPa (Spring No.2L) 1.0: Set Pressure 1.0MPa (Spring No.3L) 2.0: Set Pressure 2.0MPa (Spring No.4L)
(EN standard CB : 400V class		Model example	s: FTP-2MY750-B-20	04AM (750W, 3 phase, 380V/50Hz	, CCC certified, GB2	
(EN standard		※ Special versio	ns such is outdoor typ	be are described in the following.		

Dimension, pump spec., motor spec.

- X All numbers are the same as for the standard version.
- X The protective structure compliance to CCC, GB3 and EN (CE) are IP54 and the insulation class is B.

Standard

In order to use motors with 1.1kW or less in China, the motors have to be CCC certified.

Also motors with 750W or higher must have GB3 to be used in China.

GB3

GB3 is equivalent to IE2 of IEC.

Only motors, which meet EN standard and have CE marks attached, can be used in member nations of EU.

Compliance to standards

	U.S.A./Canada	Korea	Australia	ΕU	China	Japan
Required standard	1HP~200HP (0.75kW~150kW) IE3	0.75kW~37kW I E 2	0.73kW~185kW LEVEL 1A,1B	0.75kW~7.5kW I E 2	0. 75kW~375kW GB3 ~1. 1kW CCC	0.75kW∼375kW I E 3
Compliant product	O The regular 2MY200 and 2MY400 and 2MY700 can be used. O Products with other specifications are prepared now.	O The regular 2MY200 and 2MY400 and 2MY700 can be used. O For other products, CE certified motors can be used.	O The regular 2MY200 and 2MY400 and 2MY700 can be used. O For other products, CE certified motors can be used.	O CE Product 2MY200 and 2MY400 and 2MY700 can be used. O IE2 Product 2MY750 and 2MY1500 can be used.	O CE Product 2MY200 and 2MY400 and 2MY700 can be used. O IE2 Product 2MY750 and 2MY1500 can be used.	Standard product

O The above is as of June, 2016. Since standards may be revised, please check the latest status of a standard of your interest.

2MBC Base coupling mount type

Medium Capacity / Medium pressure

The 2MBC product combines the 2A pump and a dedicated motor are connected by a coupling and mounted on a base. The standard motor for the 2MBC is a 3 phase, 4 pole and 200V motor. Other motors can be used. (e.g. outdoor type, explosion-proof, high efficiency, 6 pole, different voltage inverter)

A continuous operation at 200°C (VH version) can be conducted. Please contact Fuji Techno for this operation.

Model

	Motor output	Motor pole		Model N
FTP—2MBC			_	
	200	No mark	: 4 poles	204
	400	×2P:2	poles	206
	750	×6P:6	poles	208
	1500	×8P:8	poles	210
	2200			212
				216
				220

No mark : Standard WO: Bunker oil, Coolant Water PL: Liquid seal

No mark : Clockwise R: Counter clockwise

Seal material

No mark : Standard (-5 \sim 80°C) VF ; $Viton(R) for high temp. (120 <math display="inline">^{\circ}C)$ VH: Ultrahigh temp. (200°C)

In case of the continuous operation of the pump for a long period, please contact Fuji Techno for consultation in advance.

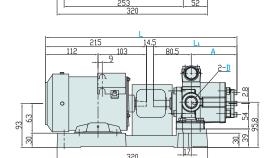
Relief valve

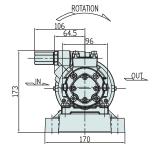
No mark : No valve VB · With valve (Internal-return)

VD : With valve

Relief valve set pressure

0.1 : Set Pressure 0.1MPa (Spring No.1L) 0.5 : Set Pressure 0.5MPa (Spring No.2L)

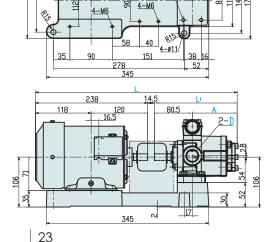

1.0 : Set Pressure 1.0MPa (Spring No.3L)

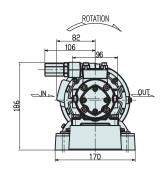

2.0 : Set Pressure 2.0MPa (Spring No.4L)

Model examples: FTP-2MBC750X6P-220AVF-VB1.0 (750W, 6 pole, high temp. version, with relief valve 〈set pressure 1.0MPa〉)

Dimensional diagrams (mm)

■FTP-2MBC200-2**A(WO,PL)-VB

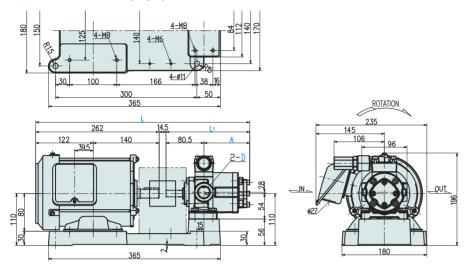




Model	L	L ₁	Α	D
204A (WO,PL)	375.2	145.7	65.2	
206A(WO,PL)	380.2	150.7	70.2	Rc 1/2
208A (WO,PL)	386.5	157.0	76.5	1/2
210A(WO,PL)	391.7	162.2	81.7	,
212A(WO,PL)	396.9	167.4	86.9	Rc 3/4
216A(WO,PL)	407.1	177.6	97.1	0, 1

O The above are numbers in case that a Mitsubishi motor is used.

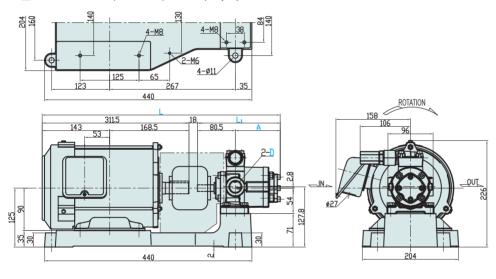
■FTP-2MBC400(200 × 6P) $-2**A(W0\PL) -VB$



Model	L	L ₁	A	D
204A (WO,PL)	398.2	145.7	65.2	
206A (WO,PL)	403.2	150.7	70.2	Rc 1/2
208A (WO,PL)	409.5	157.0	76.5	1/2
210A (WO,PL)	414.7	162.2	81.7	
212A (WO,PL)	419.9	167.4	86.9	Rc
216A (WO,PL)	430.1	177.6	97.1	3/4
220A (WO,PL)	440.2	187.7	107.2	

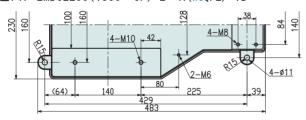
O The above are numbers in case that a Mitsubishi motor is used.

Dimensional diagrams (mm)


■FTP-2MBC750-2**A (WO,PL)-VB

Model	L	Lı	A	D
204A (WO,PL)	422.2	145.7	65.2	
206A (WO,PL)	427.2	150.7	70.2	Rc 1/2
208A (WO,PL)	433.5	157.0	76.5	1/2
210A(WO,PL)	438.7	162.2	81.7	
212A(WO,PL)	443.9	167.4	86.9	Rc
216A(WO,PL)	454.1	177.6	97.1	3/4
220A (WO,PL)	464.2	187.7	107.2	

O The above are numbers in case that a Mitsubishi motor is used.


■FTP-2MBC1500(750 × 6P)-2**A(WO,PL)-VB

Model	L Li		Α	D
204A (WO,PL)	475.2	145.7	65.2	_
206A (WO,PL)	480.2	150.7	70.2	Rc 1/2
208A (WO,PL)	486.5	157.0	76.5	1/2
210A(WO,PL)	491.7	162.2	81.7	
212A(WO,PL)	496.9	167.4	86.9	Rc
216A(WO,PL)	507.1	177.6	97. 1	3/4
220A(WO,PL)	517.2	187.7	107.2	

O The above are numbers in case that a Mitsubishi motor is used.

■FTP-2MBC2200(1500×6P)-2**A(W0,PL)-VB

		L		
	3	366	21.5 L ₁	
	173	193	80.5	Α
150 50 100 30	65		0	96 54 28
		483		

Model	L	Lı	A	D			
204A (WO,PL)	533.2	145.7	65.2	7			
206A (WO,PL)	538.2	150.7	70.2	Rc 1/2			
208A (WO,PL)	544.5	157.0	76.5	1/2			
210A (WO,PL)	549.7	162.2	81.7				
212A (WO,PL)	554.9	167.4	86.9	Rc			
216A (WO,PL) 565.1 177.6 97.1							
220A (WO,PL) 575.2 187.7 107.2							
O The above ar	e numl	pers in	case				

that a Mitsubishi motor is used.

Please read the following page as well.

Spec

■ Standards

	No	No. of motor revolutions 50Hz 1500min ⁻¹					No. of motor revolutions 60Hz 1800min ⁻¹					
	Theoretical	Max. discharge pressure to motor output (MPa)				Theoretical	Max. discharge pressure to motor output (MPa)					
	flow rate (L/min)	200W	400W	750W	1500W	2200W	flow rate (L/min)	200W	400W	750W	1500W	2200W
204A (VB,VD)	6.0	1. 2	3.0	3.0	3.0	3.0	7.2	0.9	2.3	3.0	3.0	3.0
206A (VB,VD)	9.0	0. 7	1.8	2.5	2.5	2.5	10.8	0.5	1.4	2.5	2.5	2.5
208A (VB,VD)	12.0	0.5	1.3	2.5	2.5	2.5	14.4	0.3	1.0	2.3	2.5	2.5
210A (VB,VD)	15.0	0. 4	1.1	2.5	2.5	2.5	18.0	0.3	0.9	2.0	2.5	2.5
212A (VB,VD)	18.0	0.3	0.9	2.0	2.0	2.0	21.6	_	0.7	1.6	2.0	2.0
216A (VB,VD)	24.0	0. 2	0.7	1.5	1.5	1.5	28.8	_	0.5	1.2	1.5	1.5
220A (VB,VD)	30.0	_	0.4	1.2	1.2	1.2	36.0	_	0.3	0.9	1.2	1.2

O The above max. discharge pressure are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

■ For bunker oil and coolant water

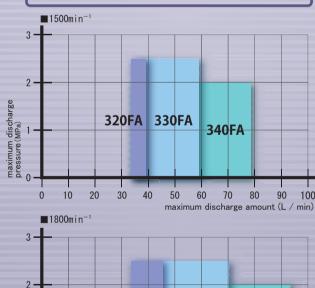
	No	No. of motor revolutions 50Hz 1500min ⁻¹					No. of motor revolutions 60Hz 1800min ⁻¹					
Model	Theoretical Max. discharge pressure to motor output (MPa)			Theoretical	Max. discharge pressure to motor output (MPa)							
	flow rate (L/min)	200W	400W	750W	1500W	2200W	flow rate (L/min)	200W	400W	750W	1500W	2200W
204AW0 (VB,VD)	6.0	1. 2	1.5	1. 5	1. 5	1.5	7.2	1. 0	1. 5	1.5	1. 5	1. 5
206AWO (VB,VD)	9.0	0.7	1.5	1.5	1.5	1.5	10.8	0. 6	1. 2	1.5	1.5	1.5
208AWO (VB,VD)	12.0	0.6	1. 2	1.5	1.5	1.5	14.4	0.4	1.0	1.5	1.5	1.5
210AW0 (VB,VD)	15.0	0.4	1.0	1.5	1.5	1.5	18.0	0.3	1.0	1.5	1.5	1.5
212AW0 (VB,VD)	18.0	0.3	0.9	1.5	1. 5	1.5	21.6	_	0.8	1.5	1. 5	1. 5
216AWO (VB,VD)	24.0	0. 2	0.7	1.4	1.5	1.5	28.8	_	0.6	1. 2	1.5	1.5
220AW0 (VB,VD)	30.0	_	0.6	1. 2	1. 2	1. 2	36.0	_	0.5	0. 9	1. 2	1. 2

O The above max. discharge pressure are in combination with ISO-VG2 at 40°C.

Compliance to standards

	U.S.A./Canada	Korea	Australia	ΕU	China	Japan
Required standard	1HP~200HP (0.75kW~150kW) IE3	0.75kW~37kW I E 2	0.73kW~185kW LEVEL 1A,1B	0.75kW~7.5kW I E 2	0. 75kW~375kWGB3 ~1. 1kW CCC	0.75kW∼375kW I E 3
Compliant product	Special motor available	Special motor available	● The regular products can be used for 400W or lower. ● above 750W	Special motor available	Special motor available	Standard product

O The above is as of June, 2016. Since standards may be revised, please check the latest status of a standard of your interest.


O In the event that abrasive liquid like kerosene oil is used, a discharge pressure must be 0.7MPa or less.

High capacity / Medium pressure

Performance Pattern Chart

Pump

High capacity / Medium pressure

The 3FA pump is for large capacity and mid. Pressure. The max. flow rates and discharge pressures are 93.6 L/min or less and 2.5 MPa or less, respectively. The pump is used for hydraulic and lubrication applications. The dedicated motor is often used with the 3FA pump. Since this pump is relatively small, there are many cases that the pump is integrated into a machine. The rotation direction is clockwise, which is opposite to that of 1A, 1HG and 2A.

Model

FTP-

330

No mark : Standard M : Dedicated motor (short shaft)

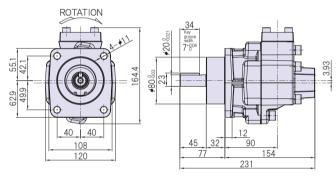
No mark: Standard (-5~80°C) TN: Low viscosity, Coolant liquid

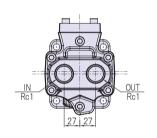
No mark: No valve

Relief valve

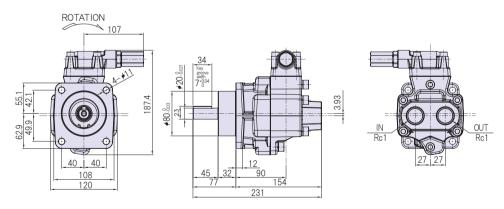
VF: Viton(R) for high temp. (120°C) VB: With valve (Internal-return)

Model examples: FTP-320FAM-VB1.0 (With relief valve \(\set \) pressure 1.0MPa \(\) , exclusive motor)


Relief valve set pressure

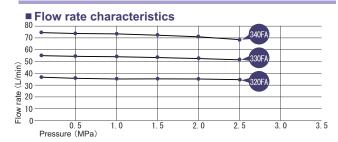

0.1 : Set Pressure 0.1MPa (Spring No.1L) 0.5 : Set Pressure 0.5MPa (Spring No.2L) 1.0 ; Set Pressure 1.0MPa (Spring No.3L)

1.5 : Set Pressure 1.5MPa (Spring No.4L) 2.0 : Set Pressure 2.0MPa (Spring No.5L) 2.5 : Set Pressure 2.5MPa (Spring No.6L)


Dimensional diagrams (mm)

■FTP-3**FA

■FTP-3**FA-VB

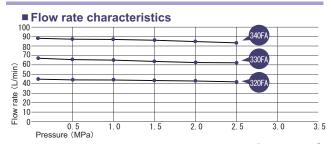


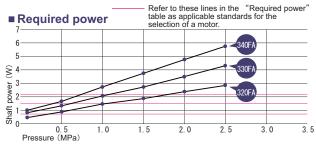
Spec

Spec	Flow rate per. rev.	Theoretical flo	ow rate(L/min)	Max. discharge	Max. revolution	Approx. weight	
Model	Model (ml/rev) 1		1800min ⁻¹	pressure (MPa)	(min ⁻¹)	(kg)	
320FA (VB)	26	39. 0	46. 8	2. 5	1800	10.7/11.3	
330FA (VB)	39	58. 5	70. 2	2. 5	1800	10.6/11.2	
340FA (VB)	52	78. 0	93. 6	2. 0	1800	10.5/11.1	

O The above max. discharge pressure and max. revolution are in combination with SO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

At 1,450 rotations (50Hz)





Spec		Flo	w rate	e (L/n	nin)		Required power (W)							
		Pre	essure	e (MF	a)		Pressure (MPa)							
Model	0.1	0.5	1.0	1.5	2. 0	2. 5	0.1	0.5	1.0	1.5	2. 0	2. 5		
320FA	37.2	36.9	36.5	36.1	35.7	35	0.45	0.78	1.20	1.60	2.02	2.22		
330FA	55.5	54.9	54.0	53.2	52.3	51.5	0.64	1.12	1.72	2.31	2.91	3.52		
340FA	74.6	73.9	73.0	72.1	71.2	68.5	5 0.80 1.45 2.25 3.10 3.90 4					4.72		

OThe required power varies depending on viscosity, temp. etc.

At 1,750 rotations (60Hz)

Spec		Flo	w rat	e (L/r	nin)		Required power (W)							
		Pre	essur	e (MF	Pa)		Pressure (MPa)							
Model	0.1	0.5	1.0	1.5	2. 0	2. 5	0.1	0.5	1.0	1.5	2. 0	2. 5		
320FA	44.9	44.6	44.1	43.6	43.1	42.5	0.55	0.98	1.45	1.95	2.44	2.92		
330FA	67.3	66.5	65.5	64.4	63.3	62.3	0.78	1.34	2.05	2.80	3.51	4.24		
340FA	89.2	88.5	87.5	86.6	85.6	84.6	.6 1.00 1.81 2.84 3.84 4.82					5.80		

3 M F

Motor Pump Standards (CCC, GB3, CE, IE3)

High capacity / Medium pressure

Dimension, pump spec., motor spec.

- X All numbers are the same as for the standard version. (P29)
- * The protective structure compliance to CCC, GB3 and EN (CE) are IP54 and the insulation class is B.

Motor standard

In order to use motors with 1.1kW or less in China, the motors have to be CCC certified.

Also motors with 750W or higher must have GB3 to be used in China.

GB3

GB3 is equivalent to IE2 of IEC.

Only motors, which meet EN standard and have CE marks attached, can be used in member nations of EU.

Compliance to standards

	U.S.A./Canada	Korea	Australia	EU	China	Japan
Required standard	1HP~200HP (0.75kW~150kW) IE3	0.75kW∼37kW I E 2	0.73kW~185kW LEVEL1A,1B		0. 75kW~375kW GB3 ~1. 1kW CCC	0.75kW∼375kW I E 3
Compliant product	In preparation	_	_	IE2, CE certified product	GB3 certified product	Standard product

O The above is as of June, 2016. Since standards may be revised, please check the latest status of a standard of your interest.

Motor Pump

(Three-phase motor)

High capacity / Medium pressure

This motor pump is the combination of the 3FAM pump and a dedicated motor and has a small footprint. 3 phase and 200V are the standard of the dedicated motor. A 6 pole motor can be used. As to high temperature, the VF version (max. 120°C) is available.

Model

FTP-3F

%750×6P available

Please contact Fuji Techno

for consultation in advance.

×4P: 4 poles No mark: Standard

A: 200V class 750 \rightarrow CCC,GB3/1500 \rightarrow GB3 330 B: 400V class 750→CCC,GB3 / 1500→GB3 340 ${\rm CA:200V\,class\,(EN)}$

CB: 400V class (EN) EA: 200V class (IE3) EB: 400V class (IE3)

Seal material FAM

No mark : Standard (-5~80°C) VF : Viton(R) for high temp.

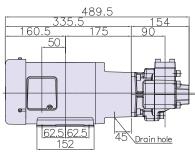
(120°C, 24hous continous in case of 80°C) TN: Low viscosity, Coolant liquid

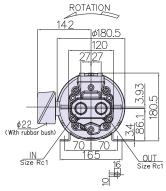
Relief valve set pressure

No mark: No valve

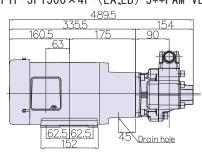
VB: With valve

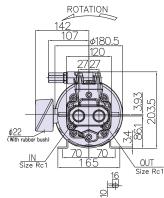
0.1 : Set Pressure 0.1MPa (Spring No.1L) 0.5 : Set Pressure 0.5MPa (Spring No.2L)


1.0 : Set Pressure 1.0MPa (Spring No.3L) 1.5 : Set Pressure 1.5MPa (Spring No.4L)


2.0 : Set Pressure 2.0MPa (Spring No.5L) 2.5 : Set Pressure 2.5MPa (Spring No.6L)

Model examples: FTP-3F1500×4P-EA-320FAMVF-VB0.1 (750W, 200V IE3, 4 pole, high temp. version, with relief valve 〈set pressure 1.0MPa〉)


Dimensional diagrams (mm)


■FTP-3F1500×4P-(EA,EB)-3**FAM

■FTP-3F1500 × 4P-(EA LEB)-3**FAM-VB

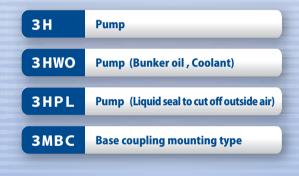
Spec

Spec	No	. of motor revolutions 50Hz 1500min ⁻¹	No. of motor revolutions 60Hz 1800min ⁻¹				
	Theoretical flow rate	Max. discharge pressure to motor output (MPa)	Theoretical flow rate	Max. discharge pressure to motor output (MPa)			
Model	(L/min)	1500W	(L/min)	1500W			
320FAM(VB)	39. 0	1. 3	46. 8	1.0			
330FAM(VB)	58. 5	0.8	70. 2	0. 6			
340FAM(VB)	78. 0	0. 5	93. 6	0. 3			

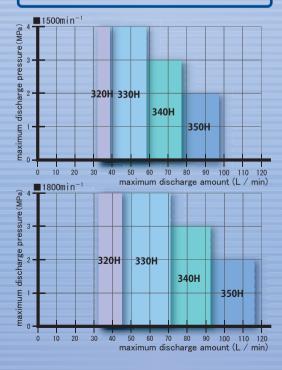
O The above max. discharge pressures are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Motor spec

■200V 220V (200V class)


Power (W)	Pole (P)	Rating	Voltage (V)	Frequency (Hz)	Revolutions (min-1)	Current (A)	Approx. weight(kg)
1500	4	CONT	200/200/220	50/60/60	1450/1740/1750	6. 9/6.2/6.0	24

■380V 400V 440V (400V class)


Power (W)	Pole (P)	Rating	Voltage (V)	Frequency (Hz)	Revolutions (min-1)	Current (A)	Approx. weight(kg)
1500	4	CONT	400/400/440	50/60/60	1450/1740/1750	3. 4/3. 1/3. 0	24

High Capacity / High pressure, Medium pressure

Performance Pattern Chart

Pump

High Capacity / High pressure, Medium pressure

The 3H pump is a large capacity pump for high pressure. The max. flow rates and discharge pressures are 117L/min or less and 4 MPa or less, respectively.

This pump are widely used in hydraulic, lubrication and cooling applications. By operation in low rotations, the pump can feed liquid in viscosity exceeding 10,000 mm2/s. There are 4 models and many combinations of the rotation direction, the seal, the relief valve and the temperature range including the VH version. The rotation direction is clockwise, which is reverse of that of 1A and 2A.

Model

No mark : Standard No mark : Clockwise WO: Waste oil

Coolant liquid

L : Counter clockwise PL: Liquid seal TN: Low viscosity,

Model examples: FTP-330HL-VB0.1 (With relief valve 〈set pressure 0.1MPa〉, exclusive motor)

No mark : Standard (-5~80°C) VF: Viton(R) for high temp. (120°C) VH ; Ultrahigh temp. (200°C)

** In case of the continuous operation of the pump for a long period, please contact Fuji Techno for consultation in advance.

Relief valve set pressure

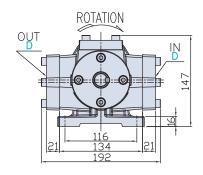
No mark: No valve

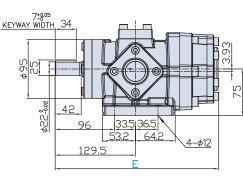
(Internal-return)

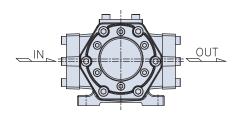
VB : With valve

0.1 : Set Pressure 0.1MPa(Spring No.1L) 0.5 : Set Pressure 0.5MPa(Spring No.2L)

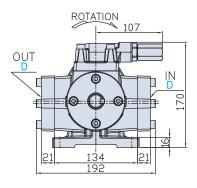
1.0 : Set Pressure 1.0MPa(Spring No.3L)

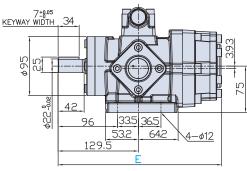

1.5 : Set Pressure 1.5MPa(Spring No.4L)

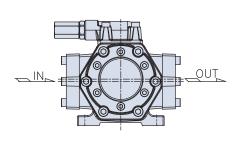

2.0 ; Set Pressure 2.0MPa(Spring No.5L)


2.5 : Set Pressure 2.5MPa(Spring No.6L)

Dimensional diagrams (mm)


■FTP-3**H(WO、PL、TN) Without relief valve





■FTP-3**H-VB (WO、PL、TN)With relief valve (VB)

■ Standard and PL type

Model)	F
Model	In	Out	ш
320H(PL)	Rc1	Rc1	264
330H(PL)	Rc1 ¹ / ₄	Rc1	264
340H(PL)	Rc1 1/4	Rc1	264
350H(PL)	Rc1 1/4	Rc1	274

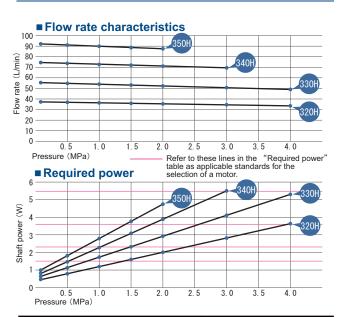
*Common Drawing

■ WO and TN type

- · · · · · · ·	TTO and TTT typo									
Madal	[F								
Model	In	Out	E							
320H(WO,TN)	Rc1 1	Rc1	264							
330H(WO,TN)	Rc1 1/4	Rc1	264							
340H(WO,TN)	Rc1 1/4	Rc1 1	264							
350H (WO, TN)	Rc1 1/4	Rc11	274							

***Common Drawing**

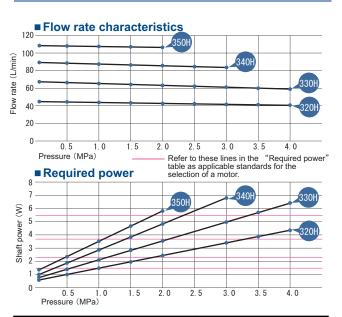
Spec


Spec	Flow rate per. rev.	Theoretical fl	ow rate (L/min)	Max. discharge	Max. revolution	Approx.weight Without valve/With valve
Model	(ml/rev)	1500min ⁻¹	1800min ⁻¹	pressure (MPa)	(min ⁻¹)	(kg)
320H (VB)	26	39. 0	46. 8	4. 0	1800	16. 9/17. 7
330H (VB)	39	58. 5	70. 2	4. 0	1800	17. 0/17. 8
340H (VB)	52	78. 0	93. 6	3. 0	1800	17. 0/17. 8
350H (VB)	65	97. 5	117. 0	2. 0	1800	18. 0/18. 8

O The above max. discharge pressure and max. revolution are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Performance

O Test conditions Oil: ISO-VG46 Oil temp.: 40°C


At 1,450 rotations (50Hz)

Spec		F	low	rate ((L/mi	n)		Required power (W)						
			Pres	sure	(MPa	a)		Pressure (MPa)						
Model	0.1	. 1 0. 5 1. 0 1. 5 2. 0 3. 0 4. 0							0.5	1.0	1.5	2.0	3.0	4. 0
320H	37.2	36.9	36.5	36.2	35.7	34.9	33.5	0.45	0.78	1.20	1.60	2.02	2.83	3.64
330H	55.5	55.1	54.3	53.2	52.2	50.6	49.0	0.64	1.12	1.72	2.31	2.91	4.10	5.30
340H	74.6	73.9	73.0	72.1	71.2	69.5	1	0.80	1.45	2.25	3.10	3.90	5.50	_
350H	92.1	91.2	90.0	88.8	87.6	_	_	1.00	1.77	2.78	3.79	4.74	_	_

OThe required power varies depending on viscosity, temp. etc.

At 1,750 rotations (60Hz)

	Spec		F	low	rate (L/mii	n)	Required power (W)							
				Pres	sure	(MPa	a)		Pressure (MPa)						
	Model	0.1	0.5	1.0	1.5	2.0	3.0	4.0	0.1	0.5	1.0	1.5	2.0	3.0	4.0
	320H	44.9	44.6	44.1	43.6	43.1	42.0	40.6	0.59	0.96	1.45	1.95	2.44	3.40	4.35
	330H	67.3	66.5	65.5	64.4	63.3	61.2	59.0	0.78	1.34	2.05	2.80	3.51	4.93	6.40
	340H	89.2	88.5	87.5	86.6	85.6	83.6	1	1.00	1.80	2.84	3.84	4.80	6.80	_
ı	350H	108.4	108.0	107.4	106.8	106.3	_	_	1.35	2.28	3.48	4.65	5.83	_	_

Selection of proper filter

It is preferable to have a filter with a very large filtration volume and fine mesh. However, since a space for a filter is not unlimited, the size of the filter is determined by the available space.. Then, the next step is to select a proper mesh. A filter with 60 mesh or rougher allows particles large enough to cause blockage of FTP pump. In consideration of FTP's applications, 150 -250 mesh are appropriate. Lastly, liquid viscosity and passing flow rate are bases to determine a filtration volume. Usually, a filter manufacturer provides a user with a recommendation and information about the size of a filter based on a specification. Roughly speaking, it is essential to select the size of a filter, which is as large as possible and larger than an inlet diameter of a pump. If possible, place a vacuum gauge in a suction side to prevent any vacuum. Also, it is important to monitor a pump for any unusual sounds. Before the installation of a filter, make sure that there are no particles like iron powder or sealant tape in the plumbing between a pump and a filter location.

3 HWO

Pump

(Bunker oil, Coolant)

High Capacity / High pressure, Medium pressure

Special PTFE (Teflon (R)) seals are used to isolate bearings from liquid so that wear of the bearings is minimized. Thus, the 3HWO is able to reach a long product life even with spray of waste oil or coolant liquid with slurry.

The 3HWO can handle liquids up to the temperature of 150°C. In case that it is required to handle temperatures higher than 150°C is required, please consult with Fuji Techno.

The suction pressure can be as high as the max. discharge pressure in the 3HWO.

Spec

Spec	Flow rate per. rev.	Theoretical flo	w rate (L/min)	Max. discharge	Max. revolution	Approx. weight Without valve/With valve
Model	(ml/rev)	1500min ⁻¹	1800min ⁻¹	pressure (MPa)	(min ⁻¹)	(kg)
320HW0 (VB)	26	39. 0	46. 8	1.0	1800	16. 9/17. 7
330HW0 (VB)	39	58. 5	70. 2	1.0	1800	17. 0/17. 8
340HW0 (VB)	52	78. 0	93. 6	0.8	1800	17. 0/17. 8
350HW0 (VB)	65	97. 5	117. 0	0.7	1800	18. 0/18. 8

- O The above max. discharge pressure and max. revolution are in combination with ISO-VG2 at 40°C. With ISO-VG46 at 40°C, the max. pressure and the max. revolution are the same as that of the standard version.(see page 31)
- O In the event that abrasive liquid like kerosene oil is used, a discharge pressure must be 0.7MPa or less.

3HPL

Pump

(Liquid seal to cut off outside air)

High Capacity / High pressure, Medium pressure

By using special PTFE (Teflon (R)) seals to confine liquid between the seals, the liquid is prevented from contacting open air. The 3HPL is ideal to transfer air reactive chemicals such as isocyanate.

The max. temperature the 3HPL can bear is 120°C. If a temperature higher than 120°C is required, please contact Fuji Techno for consultation.

Because of the use of the seals, a suction pressure can be up to the max. discharge pressure in the 3HPL

Spec

Spec	Flow rate per. rev.	Theoretical flow rate (L/min)		Max. discharge	Max. revolution	Approx. weight Without valve/With valve
Model	(ml/rev)	1500min ⁻¹	1800min ⁻¹	pressure (MPa)	(min ⁻¹)	(kg)
320HPL (VB)	26	39. 0	46. 8	2. 0	1800	16. 9/17. 7
330HPL (VB)	39	58. 5	70. 2	2. 0	1800	17. 0/17. 8
340HPL (VB)	52	78. 0	93. 6	1. 0	1800	17. 0/17. 8
350HPL (VB)	65	97. 5	117. 0	1. 0	1800	18. 0/18. 8

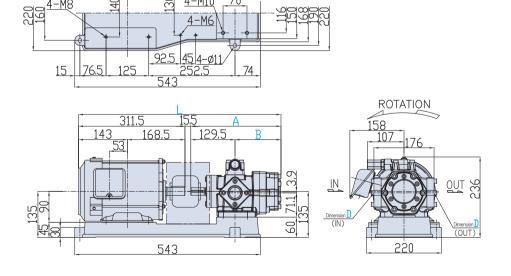
- O The above max. discharge pressure and max. revolution are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.
- O In the event that abrasive liquid like kerosene oil is used, a discharge pressure must be 0.7MPa or less.

3MBC

Base coupling mount type

High Capacity / High pressure, Medium pressure

The 3MBC product combines the 3H pump and a non-dedicated motor are connected by a coupling and mounted on a base. The standard spec. of the motor is 3 phase, 4 pole and 200V. It is possible to use other motors such as outdoor type, explosion-proof, 6 pole, geared motor and different voltage motor. A continuous operation at 200°C (VH version) can be provided. Please contact Fuji Techno for this operation.


Model

FTP—3MBC Motor output 0.75 1.5 2.2	Motor pole, reduction ratio No mark: 4 poles 320 ×4P: 4 poles 330 ×6P: 6 poles 340	Applications No mark: Standard WO: Waste oil PL: Liquid seal	Rotation direction No mark: Counter clockwise L: Clockwise	Seal material No mark: Standard (-5~80°C) VF: Viton(R) for high temp. (120°C) VH: Ultrahigh temp. (200°C)	Relief valve No mark: No valve VB: With valve (Internal-return)	Relief valve set pressure ex. 0.1 : Set Pressure 0.1MPa(Spring No.1L) 0.5 : Set Pressure 0.5MPa(Spring No.2L)
3.7 5.5	×8P:8 poles 350 1/3 : Ratio 1/3 1/5 : Ratio 1/5 1/10 : Ratio 1/10	TN : Low viscosity, Coolant liquid		※In case of the continuous operation of the pump for a long period, please of Fuji Techno for consultation in advar	ontact	1.0 : Set Pressure 1.0MPa(Spring No.3L) 1.5 : Set Pressure 1.5MPa(Spring No.4L) 2.0 : Set Pressure 2.0MPa(Spring No.5L) 2.5 : Set Pressure 2.5MPa(Spring No.6L)

Model examples: FTP-3MBC1.5kW × 6P-320HPL-VB1.0 (1.5kW, 6 pole, liquid seal specifications, with relief valve 〈Set pressure 1.0MPa〉)

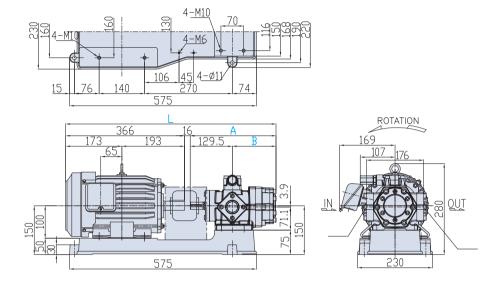
Dimensional diagrams (mm)

■ FTP-3MBC1. $5kW \times 4P(0.75kW \times 6P) - 3**H(WO,PL,TN)-VB$

■ Standard and PL type

Model	1	٨	В	D	
Model	Model L A B		In	Out	
320H (PL)				Rc1	
330H (PL)	591	264	134.5		Rc1
340H (PL)				$Rc1\frac{1}{4}$	KGI
350H (PL)	601	274	144.5		

■ WO type and TN type


Model	1	Α	В	D	
Model	odei L A D		In	Out	
320H(WO,TN)					Rc1
330H(WO,TN)	591	264	134.5	Rc1 1/4	KG I
340H(WO,TN)				KCI 4	Rc1 1/4
350H(WO,TN)	601	274	144.5		NCI 4

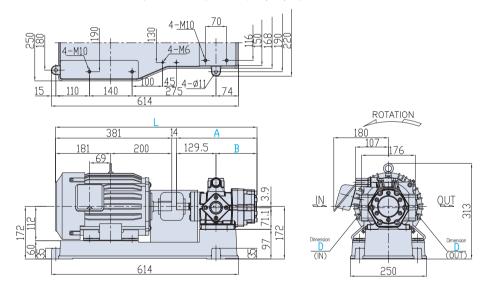
O The above are numbers in case that a Mitsubishi motor is used.

Please read the following page as well.

Dimensional diagrams (mm)

■FTP-3MBC2. 2kW×4P(1.5kW×6P)-3**H(WO,PL,TN)-VB

■ Standard and PL type


Standard and FL type						
Model	_	٨	В	D		
Model	Model L A D		In	Out		
320H (PL)				Rc1		
330H (PL)	646	264	134.5		Rc1	
340H (PL)				$Rc1\frac{1}{4}$	NG I	
350H (PL)	656	274	144.5			

■ WO type and TN type

Madal	1	٨	R	[)
Model	_	Α	D	In	Out
320H(WO,TN)					Rc1
330H(WO,TN)	646	264	134.5	_{Do1} 1	KCI
340H(WO,TN)				1014	Rc1 1/4
350H(WO,TN)	656	274	144.5		rci 4
	330H(WO,TN) 340H(WO,TN)	320H(WO_TN) 330H(WO_TN) 646 340H(WO_TN)	320H(W0,TN) 330H(W0,TN) 340H(W0,TN)	320H(W0,TN) 330H(W0,TN) 340H(W0,TN)	320H(W0,TN) 330H(W0,TN) 340H(W0,TN) 646 264 134.5 Rc1 1/4

O The above are numbers in case that a Mitsubishi motor is used.

■FTP-3MBC3. $7kW \times 4P$ (2. $2kW \times 6P$) -3**H(WO,PL,TN)-VB

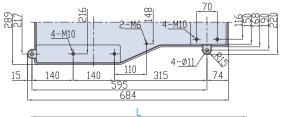
■ Standard and PL type

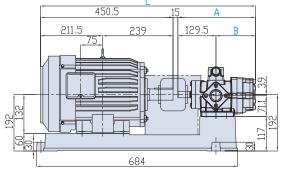
Madal	1	٨	В	D	
Model	٦	A	D	In	Out
320H (PL)				Rc1	
330H (PL)	659	264	134.5		Rc1
340H (PL)				$Rc1\frac{1}{4}$	1101
350H (PL)	669	274	144.5		

■ WO type and TN type

	Model	1	٨	В	D	
ı	Model	L		U	In	Out
	320H(WO,TN)					D 1
	330H(WO,TN)	659	264	134.5	Rc1 1/4	Rc1
	340H(WO,TN)					Rc1 1/4
	350H(WO ,TN)	669	274	144.5		11014

O The above are numbers in case that a Mitsubishi motor is used.


Compliance to standards

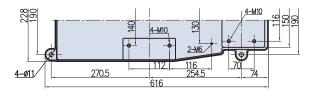

	U.S.A. / Canada	Korea	Australia	ΕU	China	Japan
Required standard	1HP~200HP (0.75kW~150kW) IE3	0.75kW~37kW I E 2	0.73kW~185kW LEVEL1A,1B	0. 75kW~7. 5kW I E 2	0. 75kW~375kW GB3 ~1. 1kW CCC	0.75kW∼375kW I E 3
Compliant product	Special motor available	Special motor available	_	Available	Special motor available	Standard product

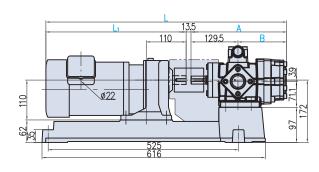
O The above is as of June, 2016. Since standards may be revised, please check the latest status of a standard of your interest.

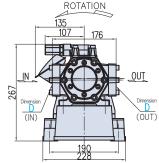
Dimensional diagrams (mm)

■FTP-3MBC5. $5kW \times 4P$ (3. $7kW \times 6P$) -3**H(WO,PL,TN)-VB

■ Standard and PL type


_ = = = = = = = = = = = = = = = = = = =							
Model	-	٨	В	D			
Model	L	A	D	In	Out		
320H (PL)				Rc1			
330H (PL)	729.5	264	134.5		Rc1		
340H (PL)				$Rc1\frac{1}{4}$	1101		
350H (PL)	739.5	274	144.5				


■ WO type and TN type


Model	1	٨	В	D	
Model	_	A	D	In	Out
320H(WO,TN)					D-1
330H(WO,TN)	729.5	264	134.5	Rc1 1/4	Rc1
340H(WO,TN)					Rc1 1/4
350H(WO,TN)	739.5	274	144.5		rul 4

O The above are numbers in case that a Mitsubishi motor is used.

■ FTP-3MBC0.75kW × 4P × 1/10(1/5) -3**H(W0,PL,TN)-VB

■ Standard and PL type

Model	L	L1	٨	В	[)
Model	1/5 1/10	1/5 1/10	А	D	In	Out
320H (PL)					Rc1	
330H (PL)	664.3	386.8	264	134.5		Rc1
340H (PL)		300.0			$Rc1\frac{1}{4}$	1101
350H (PL)	674.3		274	144.5		

■ WO type and TN type

Model	L	L1	٨	В	D	
iviouei	1/5 1/10	1/5 1/10	A	ם	In	Out
320H(WO,TN)	664.3	386.8	264	134.5	Rc1 1/4	Rc1
330H(WO,TN)						
340H(WO,TN)						Rc1 ¹ / ₄
350H(WO , TN)	674.3		274	144.5		

O The above are numbers in case that a Mitsubishi motor is used.

Spec

	No. of motor revolutions 60Hz 1800min ⁻¹									
Model	Theoretical flow rate	Max. discha	arge pressure	to motor ou	tput (MPa)	Theoretical flow rate (L/min)	Max. discharge pressure to motor output (MPa)			
	(L/min)	1500W	2200W	3700W	5500W		1500W	2200W	3700W	5500W
320H (VB)	39. 0	1. 3	2. 2	4. 0	4. 0	46. 8	1. 0	1. 7	3. 2	4. 0
330H (VB)	58. 5	0.8	1.4	2. 6	4. 0	70. 2	0. 5	1.0	2. 1	3. 3
340H (VB)	78. 0	0. 5	0. 9	1.8	3. 0	93. 6	0. 3	0. 6	1.4	2. 3
350H (VB)	97. 5	0. 3	0. 7	1.4	2. 0	117. 0	0. 1	0. 4	1.0	1.8

O The above max. discharge pressure and max. revolution are in combination with ISO-VG46 at 40°C. The rates vary depending on viscosity and temperature.

Relief valve for internal gear pump

This valve is for the protection of a pump and a motor.

There are 2 types of the valve, namely the internal-return type (VB) and the external-return type (VD).

Model

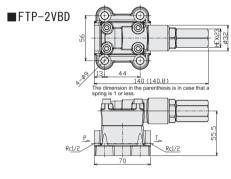
FTP— Model No.

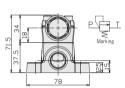
2VB (2 internal-return)

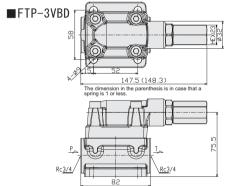
Seal material

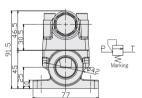
No mark : Standard

Installation


2VD (2 external-return)


No mark : Standard
VF : Viton (R) for high temp.

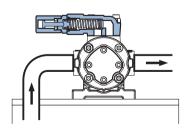

No mark : Installed in pump
D : Installed in plumbing


*The set pressure of the relief valve is a cracking pressure, not a full relief pressure.

Dimensional diagrams(mm)

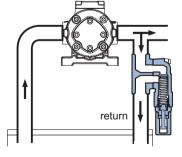
■ Dimension table

Item	Wire <i>∮</i> diameter		Number of active	Natural length	enath set pressure		Use pa	
Spring No.	(mm)	(mm)	coils	(mm)	pressure (MPa)	Cracking pressure (MPa)	O-ring P-10A	Packing
(0L)	1.4	13	12.0	54. 5		0.04~0.08	No	Yes
1L	1.7	13	13.0	54. 0	0. 1	0.08~0.25	INO	res
2L	1.8	13	13.5	60.5	0.5	0. 26~0. 50		
3L	2. 2	13	12.0	57. 5	1.0	0.51~1.19	\ \ \ 	NI-
4L	2. 9	13	13.0	54. 5	2. 0	1. 20~2. 50	Yes	No
(NR2)	2. 9	13	13.0	57		2.00~2.80		

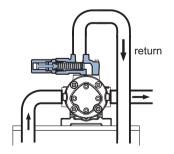

※ (0L) and (NR2) are special versions.

■ Dimension table

Item		Outer Ø	Number of active	Natural length	th set pressure		Use pa	
Spring No.	(mm)	(mm)	coils	(mm)	pressure (MPa)	Cracking pressure	O-ring P-10A	Packing
1L	1.8	14	7	52	0. 1	0.08~0.25	No	Yes
2L	2. 0	14	7	52	0.5	0. 26~0. 55		
3L	2. 6	14	12	55	0. 7	0.56~1.30		
4L	2. 5	14	10	60	1.5	1.31~1.70	Yes	No
5L	3. 0	14	9	54	2. 0	1.71~2.49		
6L	3. 2	14	9	51	2. 5	2.50~3.00		


Instructions

■Internal-return (V B type)


This valve is installed on the pump directly and used to alleviate an instantaneous pressure increase of oil during the transportation of oil. If the valve is in operation or an inlet and an outlet are fully opened for a long period, an adverse effect takes place such as noise, air bubbles or a temperature increase of oil. To avoid the adverse effect, please use an external-return type.

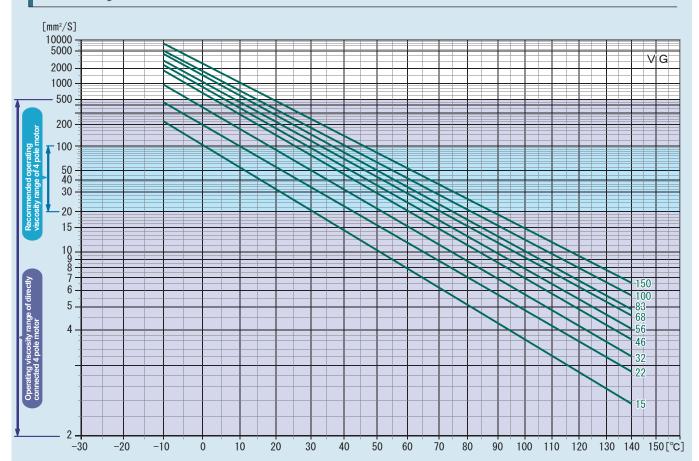
■External-return(VBDtype)

This valve is mainly used as a regulating valve for an oil pressure. A sub-plate is attached to the valve and the valve is installed in the bypass circuit of plumbing. The way this valve is used is the most suitable as relief valve. Please use this valve for doing full bypass for a long time or pressure regulation at all times.

■External-return(2 V D type)

The purpose to use this valve is the same as the VBD type but this valve can be installed directly on the type 2 pump. When the 2 VD valve is installed, please make sure that a plate is attached to cover a suction side and that plumbing for return is connected to an oil tank.

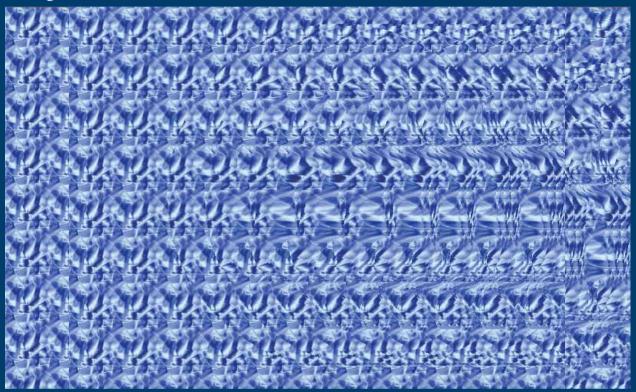
Internal structure and pressure adjustment method


■ Internal structure

■ Pressure adjustment method

- 1. Please remove the cap.
- 2. Pleae loosen the hexaon nut.
- Please turn the pressure adjustment bolt to the right when you to increase pressure setting.
 Please turn the pressure adjustment bolt to the left when you to low the pressure setting.
- Please tighten the hexagon nut to fix the pressure adjustment bolt.
- . Please close the cap.

Viscosity table of oils



Guide for selection of pump

- 1. FTP pumps are typically used for oil. For requirements using the FTP pump with other types of liquid, or under special conditions,
- $2.\,A$ filter must be installed in the suction side.
- 3. Plumbing needs to be as short as possible and should not have any acute bends...
- 4. Resistance of a suction side has to be 0.03MPa or less. (A pressure in the suction side must be 0.03MPa or less.)
- 5. Except the WO and the PL versions, where the suction pressure needs to be 0.2MPa or less.
- 6. Please avoid rapid heat up or cool down. The temperature difference has to be 40oC or less and change gradually a temperature.
- 7. When plumbing in the pump, please pay maximum attention to the tightening torque. The allowable tightening torque is as follows.

Diameter R c	1/8	1/4	3/8	1/2	3/4	1	1-1/4	1-1/2
Torque N · m	10	20	20	25	30	70	80	90

Stereogram

Please look at the left circle and the right circle in your left and right eyes, respectively. When the circles will overlap each other, take a look at the pattern in below. You will see the characters.

